
Images and Video – Lab Sheet
Audiovisual Processing CMP-6026A

Dr. David Greenwood

October 29, 2021

Aims and Objectives
The aim of these exercises is to give you some fluency in handling images and video in Matlab. In
particular, you need to understand how to isolate and work with regions of interest in an image.

Exercise 1
This lab will introduce images as handled by the Matlab programming language. The most basic form
of an image in Matlab is a matrix of unsigned 8-bit integers and one of Matlab’s great advantages is
that it can read many of the standard image file formats.

Thus:

X = imread('cameraman.tif');
whos

reads in the image contained in the file cameraman.tif, which is one of Matlab’s standard images, and
whos should return the dimensions of the image and its stored size. Most image file formats store a lot
more data than just the pixel values. The Tagged Image-File Format (TIF or TIFF) is particularly
rich – try imfinfo('cameraman.tif') to see what other information is available.

You can display an image with:

imshow(X)

To explore the pixel values in more detail try:

imtool(X)

Exercise 2
Colour images consist of three planes of data representing R, G and B respectively.

Thus:

C(:,:,1) = X;
C(:,:,2) = X;
C(:,:,3) = X;
whos

1

creates a colour image in which all three colour planes have identical values. Before you imshow(C) try
to guess what the new colour image will look like.

Exercise 3
To demonstrate to yourself that this really is a colour image you may like to alter the values in one of
the planes, the red plane in this case:

Y = C;
Y(:,:,1) = uint8(0.5 * double(C(:,:,1)));
imshow(Y)

What is the colour of the resulting image and why?

Exercise 4
There are several alternative image representations including a matrix of doubles (in which case 0 is
black and 1 is white), binary images and indexed images. Here is a double image:

Xd = double(X)/255;
whos
imshow(Xd)

Double images use up more storage than uint8s but are useful when there is a need for a high precision
in intensity (as in medical x-rays for example).

Binary images consisting of just two colours, black and white, are represented by a data-type called
logical. For example, to convert X to a binary image where pixels with an intensity ≤ 99 are set to
0, and pixels > 100 are set to 1 you can type the following:

L = (X > 100);
imshow(L)

Binary images are important because they are the end result of many image processing chains: binary
images identify regions or masks. Matlab’s logical data type is irritatingly inefficient.

What is meant by this remark? (Hint: whos)

Exercise 5
Practice to make sure you can convert between double and uint8 images and display them correctly
(using imshow). Note that they have different maximal values corresponding to white.

Exercise 6
In lectures we mentioned the use of a histogram to describe the distribution of pixel intensities within
an image:

clear
X = imread('coins.png');
figure
imshow(X)
figure
imhist(X)

Your histogram should look something like that in Figure 1.

Looking at the histogram, can you work out how to segment the coins from the background? Looking
at the image dimensions, what is the sum of the histogram bins? And how many pixels represent the
coins?

2

Figure 1: Intensity histogram associated with the coins image

Hint: to segment the coins from the background try L = (X > thresh); where thresh is some suitably
chosen threshold. The sum of L represents the number of pixels that are above the threshold.

Exercise 7
Binary images are very frequently used in machine vision and Matlab has a set of commands for dealing
with them. Can you use regionprops to measure the radii of the circles? One idea for lip-reading is to
threshold the mouth region and compute features such as height and width via regionprops. (Note: If
using this approach for the coursework you may find bwlabel a useful tool for maintaining a consistent
order of thresholded regions across video frames.)

Exercise 8
Video is just a sequence of images but, without care, it is possible to exhaust the physical memory
of the machine when reading in a video. For this reason, Matlab uses an object-oriented approach in
which video objects are accessed frame-by-frame.

v = VideoReader('xylophone.mp4');
vidHeight = v.Height;
vidWidth = v.Width;
s = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),'colormap',[]);

which creates a video object, v and a data structure, s, with two fields, cdata and colormap, to hold
the movie data.

The movie can be read in as

k = 1;
while hasFrame(v)

s(k).cdata = readFrame(v);
k = k+1;

end

You can display the movie like this:

hf = figure;
set(hf,'position',[150 150 vidWidth vidHeight]);
movie(hf,s,1,v.FrameRate);

3

In practice it is rare to read in a full movie – we usually work with individual frames or collections of
frames.

Exercise 9
Thresholding need not be confined to greyscale images. To see this use ‘imtool(s(1).cdata)} to look at
the first frame in the video. What are the pixel values associated with one of the yellow keys? You can
select the yellow key using

P = roipoly(s(1).cdata);

which brings up a figure window that enables you to click around the contour of the yellow key (help
roipoly for more information). Try using imshow on the result, P. To find the index positions of the
pixels that were selected, you can use:

ptr = find(P);

We can compute the mean colour in the selected region of the original image as:

M1 = double(s(1).cdata);
R = M1(:,:,1);
G = M1(:,:,2);
B = M1(:,:,3);
cm = [mean(R(ptr)) mean(G(ptr)) mean(B(ptr))];

The mean R, G and B within the region you selected is stored in cm. We can now measure the distance
between every pixel and this mean colour and threshold on one standard deviation of the distance.

D = sqrt((M1(:,:,1) - cm(1)).ˆ2 + (M1(:,:,2) - cm(2)).ˆ2 + ...
(M1(:,:,3) - cm(3)).ˆ2);

L = D < std(D(:))
imshow(L)

Given that the lips are generally a slightly different colour to the face, especially if wearing lipstick,
can you see how early lip-reading systems used colour and/or lipstick and/or colour markers attached
to the face?

Is such a system viable for your assignment? If you think this approach looks viable then you might also
like to experiment with colorThresholder which allows you to visualise colour thresholds in various
colour spaces.

Exercise 10
Note that images are often larger than we need them to be so it is commonplace to define a subregion
via:

roirect = getrect;
cimg = imcrop(X,roirect);

4

	Aims and Objectives
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8
	Exercise 9
	Exercise 10

