Appearance Features Audiovisual Processing CMP-6026A

Dr. David Greenwood

david.greenwood @uea.ac.uk

SCI 2.16a University of East Anglia

November 5, 2021

Content

- DCT Features
- Eigenfaces
- Appearance Models
- Visual Feature Efficacy
- Model Fusion

The main limitation of shape-only features is there is a lot of information missing.

- Modelling only lip-shape discards information about the teeth and tongue for example.
- Why not use the full *appearance* of the face?

Performs a similar function to DFT in that it transforms a signal (or image) from the spatial domain to the frequency domain.

- The difference is that it only considers the real-valued cosine components of the DFT.
- We can compact the energy of the signal into the low frequency bins.
- Used in JPEG compression.
- First proposed by Nasir Ahmed in 1972.

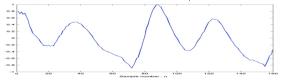
Review: DFT

Example using a speech signal

· Recall, at this stage only considering cosine (real) part of DFT

$$X^{C}(k) = \sum_{n=0}^{N-1} x(n) \cos\left(\frac{2\pi kn}{N}\right) \qquad k = 0, 1, \dots, N-1$$

 Take a short duration frame of speech to transform into frequencydomain, in this case let N = 160 time-domain samples



· So cosine part of DFT becomes:

$$X^{C}(k) = \sum_{n=0}^{159} x(n) \cos\left(\frac{2\pi kn}{160}\right) \qquad k = 0, 1, \dots, 159$$

Figure 1: Lecture 2, Slide 13: Fourier Transform

DCT 1D

$$X_k = s(k) \sum_{n=0}^{N-1} x_n cos \left[\frac{\pi k(2n+1)}{2N} \right]$$

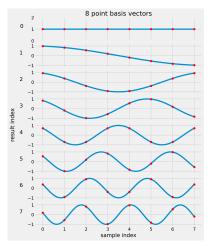
Where:

- X is the DCT output
- -x is the input signal
- N is the number of samples

$$- k = 0, 1, 2, \dots, N - 1$$

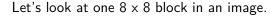
$$s(0)=\sqrt{1/N},$$
 $s(k
eq 0)=\sqrt{2/N}$

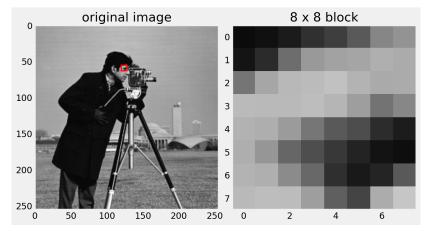
8-Point 1-D DCT Basis



$$Y_k = \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

$$n = 0, 1, 2, \ldots, N - 1$$





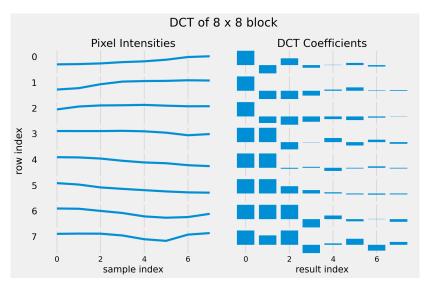
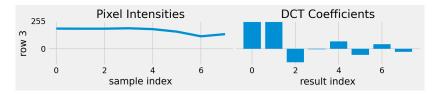


Figure 2: DCT of each row of the image block

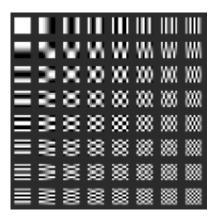


- Most of the energy is concentrated in the low frequency coefficients.
- Images have less high frequency information.

We have only considered vectors so far.

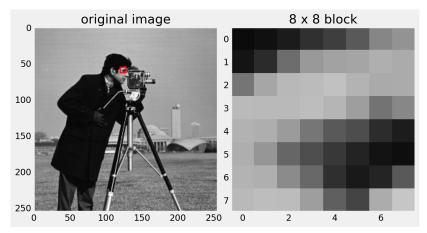
- Images are 2-dimensional (two spatial co-ordinates).
- Apply DCT to both rows and columns of the image.

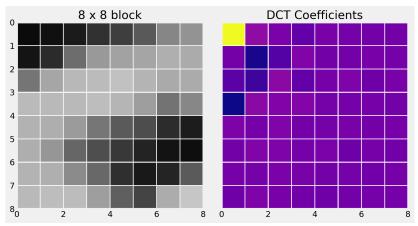
$$X_{u,v} = s_u s_v \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} I(x,y) \cos\left[\frac{\pi u(2x+1)}{2N}\right] \cos\left[\frac{\pi v(2y+1)}{2N}\right]$$



Rather than basis vectors, we have basis images.

Let's look again at the same 8×8 block in an image.





Here is the 2D DCT of the block.

972	85	19	-59	10	1	-7	-3
-6	-263	-105	37	-9	-3	9	0
-81	-168	68	-56	7	28	-19	10
-287	69	38	47	-1	-1	6	-8
25	0	34	-6	-1	11	-3	5
-11	36	31	1	14	-22	6	-12
5	2	22	9	-12	-1	-15	6
-17	30	12	-14	-19	-7	-1	-1

Let's examine the actual values of the coefficients.

972	85	19	-59	10	1	-7	-3
-6	-263	-105	37	-9	-3	9	0
-81	-168	68	-56	7	28	-19	10
-287	69	38	47	-1	-1	6	-8
25	0	34	-6	-1	11	-3	5
-11	36	31	1	14	-22	6	-12
5	2	22	9	-12	-1	-15	6
-17	30	12	-14	-19	-7	-1	-1

Notice that the most significant values congregate at the top left.

972	85	19	-59	10	1	-7	-3
-6	-263	-105	37	-9	-3	9	0
-81	-168	68	-56	7	28	-19	10
-287	69	38	47	-1	-1	6	-8
25	0	34	-6	-1	11	-3	5
-11	36	31	1	14	-22	6	-12
5	2	22	9	-12	-1	-15	6
-17	30	12	-14	-19	-7	-1	-1

We can stack the top left values to make a feature vector.

 $f = (972, 85, 19, -59, \dots)$

972	85	19	-59	10	1	-7	-3
-6	-263	-105	37	-9	-3	9	0
-81	-168	68	-56	7	28	-19	10
-287	69	38	47	-1	-1	6	-8
25	0	34	-6	-1	11	-3	5
-11	36	31	1	14	-22	6	-12
5	2	22	9	-12	-1	-15	6
-17	30	12	-14	-19	-7	-1	-1

If we want to reconstruct the image using the inverse DCT, we can set the low values to zero to view the reconstruction loss.

972	85	19	-59	10	1	-7	-0
-6	-263	-105	37	-9	-3	0	0
-81	-168	68	-56	7	0	-0	0
-287	69	38	47	-0	-0	0	-0
25	0	34	-0	-0	0	-0	0
-11	36	0	0	0	-0	0	-0
5	0	0	0	-0	-0	-0	0
-0	0	0	-0	-0	-0	-0	-0

Here you can see we have zeroed the lower right triangle. You should decide empirically how many coefficients to retain. Often, many fewer than half produce good results.

DCT Features

One approach for modelling the appearance of the face:

- Convert the image to greyscale.
- Crop the image to contain only the region of interest (the mouth).
- Normalise the size of the image to some default size (the images need the same number of pixels in each frame).
- Either resize the cropped regions, or better, use a constant clipping box.

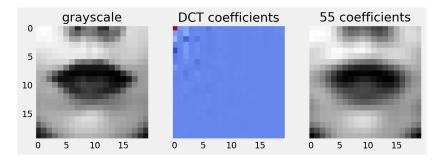
One approach for modelling the appearance of the face:

- Segment the region into n ${\sf x}$ n pixel blocks.
- Experiment with $1 \le n \le 8$.
- Apply a 2D Discrete Cosine Transform (DCT) to each block.
- Extract coefficients that encode low frequency information.

2D DCT case study

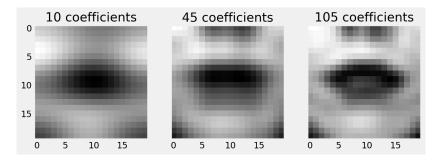
A region of interest is cropped, resized and converted to greyscale.

2D DCT case study



From the greyscale image, we can extract the DCT coefficients. We retain only the low frequency coefficients, and show a reconstruction of the image.

2D DCT case study



Perceptual evaluations of the reconstruction are informative, but your experiments should determine how useful the features are for recognising speech.

- Crop the images to contain only the region of interest.
- Normalise the size of the image.
- Images need the same number of pixels in each frame.
- Resize the images, or better, use a constant clipping box.

- Apply **PCA** to the size-normalised images.
- When applied to face images, referred to as Eigenfaces.
- This was the basis of an early face recognition system. (Turk and Pentland, 1990).

Olivetti faces

Figure 3: Training data is the Olivetti Faces corpus.

Recall, to reconstruct using PCA:

 $\mathbf{x}\approx\overline{\mathbf{x}}+\mathbf{P}\mathbf{b}$

A human face can be approximated from the mean shape plus a linear combination of the eigenfaces.

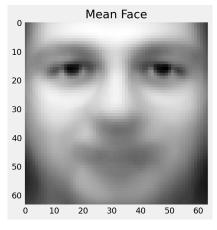


Figure 4: mean face

First 18 Principal Components

Figure 5: The Eigenfaces are the principal components of the data

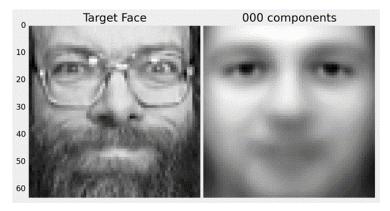


Figure 6: Example reconstruction.

There is problem with the Eigenface approach:

- There are *two* sources of variation shape **and** appearance.
- One model is trying to capture both.
- We see *ghosting* in the images when reconstructed.

We should model only the *appearance* variation.

A PDM is already able to model the shape.

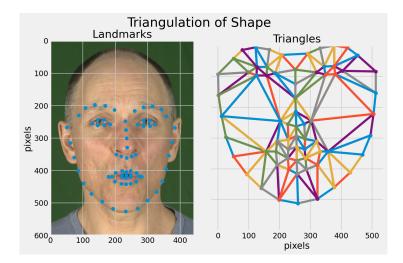
Each *pixel* should represent the same *feature*.

We can't achieve this goal by merely normalising the crop.

Given the hand-labelled images that were used to build the PDM, warp the images from the hand labels to the mean shape.

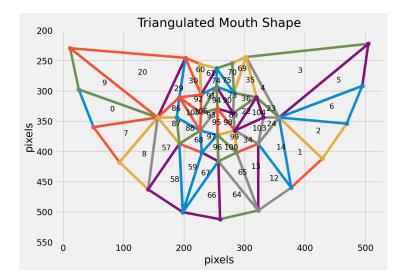
There are many ways to perform the warp, e.g.:

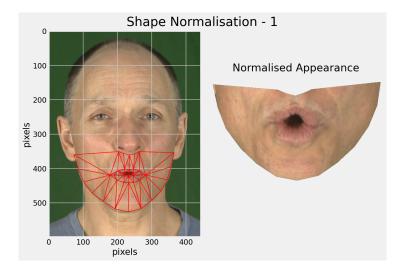
- Triangulate the landmarks, then map the pixels accordingly.

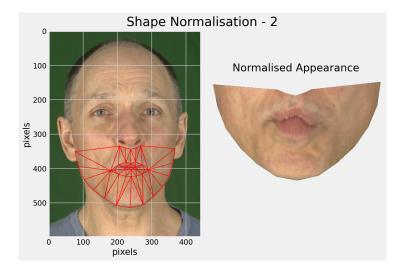


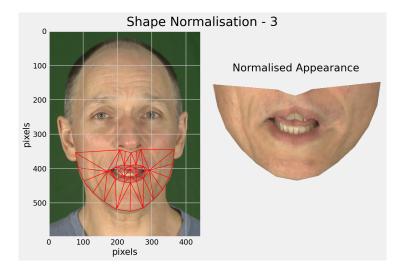
For each image in the training data, and for each triangle:

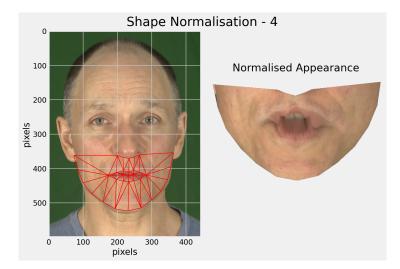
- Find *M* for MA = B, where *A* is a triangle in an image and *B* is the corresponding triangle in the mean shape.
- Use M to warp the *pixels* in each triangle.
- Accumulate the patches into one shape normalised image.











Images are shape-normalised.

- They all have the same number of pixels.
- Each pixel represents the same feature.

Applying PCA to the shape-normalised images gives a better model of appearance.

- The shape model and the appearance model can be combined or concatenated.
- The appearance can provide a photo-metric loss for model fitting.

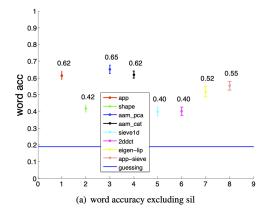
Potamianos et al. (1998) compared visual features for automatic lip-reading.

 They trained models for a single talker reciting connected digits and measured accuracy as % correct.

Effectiveness

Feature Class	Feature	Accuracy
Articulatory	Height and Width	55.8%
	and Area	61.9%
	and Perimeter	64.7%
Fourier Descriptors	Outer Lip Contour	73.4%
	Inner Lip Contour	64.0%
	Both Contours	83.9%
Appearance	LDA - based features	97.0%

Effectiveness



Lan et al. (2010) compared visual features for automatic lip-reading.

- Appearance (app)
- PDM (shape)
- DCT (2ddct)
- Eigenface (eigen-lip)
- Shape and Appearance (aam-pca)

The acoustic and visual information needs to be combined - how and where this happens is important.

 We require that the performance after fusion is not worse than best performing individual modality.

Audiovisual Fusion

Two strategies:

- Early integration: fusion is prior to recognition, e.g. at the feature level.
- Late integration: fusion is after recognition, e.g. sentence-level.

Usually an estimation of the respective confidence is required.

- Could be fixed, where it is learned during training based on accuracy.
- Could be adaptive, where it reflects the noise in the respective channels.

Advantage of early integration:

- $-\,$ We can simply concatenate the features.
- The structure of the recogniser does not need to change.

Disadvantages of early integration:

- Size of the feature vector increases making training more difficult.
- Need to normalise the features from different modalities, or weight them appropriately
- Acoustic noise affects all of the input feature vectors.
- Need to worry about the data rate, which might be different for both modalities.

Advantages of late integration:

- Acoustic noise will not affect the visual recogniser.
- Easier to adapt the recogniser to different conditions.
- Notionally less training data are required to train the respective models.
- Extends the structure of existing recognisers.
- Either fuse the outputs or use a *multi-stream HMM*.

Disadvantages of late integration:

- May need to worry about the data rate, which is different for both modalities
- Introduces extra parameters to optimise during training.

Summary

Integrating visual information can improve the robustness of speech recognisers to acoustic noise.

Face encoding using:

- DCT Features
- Eigenfaces
- Appearance Models