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– Canny edge detector
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Edge Detection

Convert an image into a set of curves.

– Extracts salient features of the image.
– Far more compact than pixels.
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Edges

An edge in an image is a significant local change or discontinuity in
the image intensity.
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Edges

Edges come from discontinuity in:

– surface normal
– depth
– surface color
– illumination

5



Edges

An image is a 2D matrix of
intensities.
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Edges

We can look at those intensities
in a single row.
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Edges

We can see how edges are
defined by these changes in
intensity.

8



Derivatives

The derivative is the rate of change of a function.

– 1D first order derivative: difference in consecutive pixels:

δf
δx ≈ f (x + 1) − f (x)
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Derivatives

The derivative is the rate of change of a function.

– 1D second order derivative: acceleration of pixel intensity
change:

δ2f
δx2 ≈ f (x + 1) + f (x − 1) − 2f (x)
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Derivatives

Required properties of first derivatives:

– Zero in regions of constant intensity
– Non-zero at onset of a ramp or step
– Non-zero along intensity ramps
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Derivatives

Required properties of second derivatives:

– Zero in regions of constant intensity
– Non-zero at the onset and end of an intensity step or ramp.
– Zero along intensity ramps.

12



Derivatives

Figure 1: Example from Gonzalez and Woods.
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Derivatives

Figure 2: Intensity, first and second derivatives
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Image Derivatives

For images, we must consider the derivative in both directions:

δf
δx ≈ f (x + 1, y) − f (x , y)

δf
δy ≈ f (x , y + 1) − f (x , y)
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Image Derivatives

Figure 3: x and y first derivatives
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Image Derivatives

An image gradient is formed of two components:

∇f =
[

δf
δx ,

δf
δy

]
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Image Derivatives

Image gradient is a vector:

∇f =
[

δf
δx ,

δf
δy

]

18



Image Derivatives

A vector has magnitude. . .

|∇f | =

√(
δf
δx

)2
+

(
δf
δy

)2

Magnitude is the strength of the edge.
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Image Derivatives

A vector has direction. . .

θ = tan−1
(

δf
δy /

δf
δx

)
Direction of an edge is perpendicular to the gradient direction.
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Image Derivatives

Figure 4: gradient direction

– The gradient points in the
direction of most rapid
change in intensity.

– Perpendicular to the edge
direction.
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Image Derivatives

Figure 5: gradient magnitude as greyscale
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Image Derivatives

First order derivatives:

– produce thicker edges in images
– have a stronger response to stepped intensity changes
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Second Order Derivatives

Second order derivatives:

– have a stronger response to fine detail
– are more aggressive at enhancing detail
– Generally, second-order derivatives are preferred.
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Second Order Derivatives

∇2f = δ2f
δx2 + δ2f

δy2

Derivative in this form is known as the Laplacian.
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Laplacian

We know:

δ2f
δx2 ≈ f (x + 1) + f (x − 1) − 2f (x)

δ2f
δy2 ≈ f (y + 1) + f (y − 1) − 2f (y)
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Laplacian

So, the Laplacian is calculated as:

∇2f = f (x + 1) + f (x − 1) + f (y + 1) + f (y − 1) − 4f (x , y)
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Laplacian

0 1 0
1 −4 1
0 1 0


The Laplacian can also be calculated by convolving the image with
this filter.
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Laplacian

Figure 6: Laplacian
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Laplacian

Figure 7: Gradient magnitude and Laplacian
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Line Detection

The Laplacian responds strongly to any detail in the image.
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Line Detection

What if we only wanted to detect lines that point in a certain
direction?

−1 2 −1
−1 2 −1
−1 2 −1


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Line Detection

Figure 8: Line Detection
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Line Detection

What about detecting edges in other directions?

Figure 9: Line directions

34



Line Detection

What about detecting edges in other directions?

Figure 10: Line directions
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Line Detection

Previous filter gives strong response along a line.

– But. . . also responds at isolated pixels.
– Edge detector should respond only to edges
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Line Detection

Look either side of candidate pixel. . .

– but ignore the pixel itself.
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Line Detection

Two popular first-order operators are Prewitt and Sobel.

Both provide approximations of derivatives.
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Line Detection

Figure 11: Prewitt, J.M.S. (1970). “Object Enhancement and Extraction”
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Line Detection

Figure 12: Prewitt responses
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Line Detection

Figure 13: Sobel, I. (1968) “An Isotropic 3x3 Image Gradient Operator”
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Line Detection

Figure 14: Sobel responses

42



For each pixel, find the maximum value from all of the filter
responses, and then threshold.

Figure 15: Sobel maximum

43



Figure 16: Gonzalez and Woods

We rarely observe ideal edges in
real images.

– Lens imperfections
– sensor noise, etc.
– Edges appear more like

noisy ramps.
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Edge Detection

Four limitations with basic gradient-based edge detection:

– Hard to set the optimal value for the threshold.
– Edges are broken (known as streaking)
– Edges can be poorly localised
– An edge might produce more than one response
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Canny Edge Detector

The Canny Edge Detector is optimal with respect to
gradient-based limitations.
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Canny Edge Detector

Requirements for a good edge detector:

– Good detection - respond to edges, not noise.
– Good localisation - detected edge near real edge.
– Single response - only one response per edge.
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Canny Edge Detector

Canny provides an elegant solution to edge detection.

– Canny provides a hacky solution to edge detection!
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Canny Edge Detector

Canny Edge Detection is a four step process:

1. Convolve image with Gaussians of particular scales.
2. Compute gradient magnitude and direction.
3. Perform non-maximal suppression to thin the edges.
4. Threshold edges with hysteresis.
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Canny Edge Detector

Step 1: Convolve image with Gaussians of particular scales.

– Smoothing helps ensure robustness to noise.
– The size of the Gaussian kernel affects the performance of the

detector.
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Canny Edge Detector

Step 2: Compute gradient magnitude and direction:

– Using Sobel operators.

Quantise the angle of the gradient:

– Discrete nature of image limits the possible angle.
– Angle can only be {0, 45, 90, 135} degrees.
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Canny Edge Detector

Step 3: Perform non-maximal suppression.

Figure 17: direction of
gradient

– An edge-thinning
technique.

– Searches for maximum
value along direction of
gradient and sets all others
to zero.

– Result is a one pixel wide
curve.
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Canny Edge Detector

Step 4: Threshold edges with hysteresis.

– Hysteresis is the dependence of the state of a system on its
history.
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Canny Edge Detector

Step 4: Threshold edges with hysteresis.

Use two thresholds: Tmin and Tmax .

E (x , y) =
{

1 E (x , y) ≥ Tmax

0 E (x , y) < Tmin
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Canny Edge Detector

Step 4: Threshold edges with hysteresis.

E (x , y) =
{

1 Tmin ≤ E (x , y) < Tmax ⇐⇒ linked to an edge
0 Tmin ≤ E (x , y) < Tmax otherwise
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Canny Edge Detector

Figure 18: Canny edge detection
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Canny Edge Detector

Figure 19: Max Sobel compared to Canny
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Summary

– Image derivatives
– Laplacian operator
– Line detection kernels
– Canny Edge Detector
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