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What is Image Filtering?

Filtering replaces each pixel with a value based on some function
performed on it’s local neighbourhood.
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What is Image Filtering?
Used for smoothing and sharpening. . .

Figure 1: Sharpen Example
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What is Image Filtering?
Estimating gradients. . .

Figure 2: Gradient Example
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What is Image Filtering?
Removing noise. . .

Figure 3: Noise Example
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Linear Filtering

Linear Filtering is defined as a convolution.

This is a sum of products between an image region and a kernel
matrix:

g(i , j) =
a∑

m=−a

b∑
n=−b

f (i − m, j − n)h(m, n)

where g is the filtered image, f is the original image, h is the kernel,
and i and j are the image coordinates.
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Convolution

Typically:

a = ⌊hrows
2 ⌋, b = ⌊hcols

2 ⌋

So for a 3x3 kernel:

both m, n = −1, 0, 1
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Kernel Matrix

Figure 4: The kernel origin is in the centre.
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Convolution

1. Scan image with a sub-window centred at each pixel.
• The sub-window is known as the kernel, or mask.

2. Replace the pixel with the sum of products between the kernel
coefficients and all of the pixels beneath the kernel.

• Sum of products only for linear filters

3. Slide the kernel so it’s centred on the next pixel and repeat for
all pixels in the image.
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Convolution

Figure 5: The kernel is positioned at (1,1) in input image.
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Convolution

Figure 6: We iterate the values of m and n.
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Convolution

Figure 7: m = −1, n = 0
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Convolution

Figure 8: m = −1, n = 1
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Convolution

Figure 9: m = 0, n = 1
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Convolution

Figure 10: Iteration is complete.
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Convolution

Figure 11: The product sum is assigned to the output image.
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Convolution

Figure 12: Slide the kernel along the row.
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Convolution

Figure 13: Slide the kernel along the row.
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Convolution

Figure 14: Move the kernel to the next row.
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Convolution

Figure 15: Continue sliding.
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Convolution

Figure 16: The image is completely covered.
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What about the edges?

The filter window falls off the
edge of the image.
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What about the edges?

A common strategy is to pad
with zeros.
The image is effectively larger
than the original.
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What about the edges?

We could wrap the pixels, from
each edge to the opposite.
Again, the image is effectively
larger.
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What about the edges?

Alternatively, we could repeat
the pixels, extending each edge
outward.
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What would the filtered image look like?

Figure 17: kernel 1
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No change!

Figure 18: kernel 1
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What would the filtered image look like?

Figure 19: kernel 2
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Shifted left by 1 pixel.

Figure 20: kernel 2
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What would the filtered image look like?

Figure 21: kernel 3
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Blurred. . .

Figure 22: kernel 3
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Mean Filter

replace each pixel with the mean of local neighbours:

h = 1
9 ×

1 1 1
1 1 1
1 1 1


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Mean Filter

Figure 23: Mean filtered with 3 x 3 kernel
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Mean Filter

we can increase the size of the kernel to get a smoother image:

h = 1
25 ×


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


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Mean Filter

Figure 24: Mean filtered with 5 x 5 kernel
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Mean Filter

Figure 25: Mean filtered with 7 x 7 kernel
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Gaussian blur

Similar to mean filter:

– Replace intensities with a weighted average of neighbours.
– Pixels closer to the centre of the kernel have more influence.
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Gaussian blur

g(x , y) = 1
2πσ2 e− x2+y2

2σ2
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Gaussian blur

Figure 26: Gaussian kernel
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Gaussian blur

Figure 27: Mean and Gaussian blur
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Image Smoothing

Smoothing effectively low pass filters the image.

– Only really practical for small kernels
– Blurring also destroys image information
– Difference between the mean and Gaussian filter is subtle, but

Gaussian is usually preferred
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Image Smoothing

If we have many images of the same scene:

– Use idea of averaging to reduce noise.
– Average pixel intensities across images rather than across the

spatial neighbour.
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Image Smoothing

– Effectively increases the signal-to-noise ratio.
– Useful in applications where image signal is low.

• E.g., imaging astronomical objects.
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What would the filtered image look like?

Figure 28: kernel 4
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Figure 29: kernel 4
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Image Sharpening

We can control the amount of sharpening:

hsharp =

0 0 0
0 1 0
0 0 0

 +

 0 −1 0
−1 4 −1
0 −1 0

 ∗ amount
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More Kernel Examples

There is a nice interactive tool to view kernel operations here:
https://setosa.io/ev/image-kernels/

The ImageMagick documentation has a nice list of kernels:
https://legacy.imagemagick.org/Usage/convolve/
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Unsharp Masking

A high pass filter formed from a low pass filtered image.

– Usually preferred over kernel sharpening filter.
– A legacy of the pre-digital period.
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Unsharp Masking

Low pass filter removes high-frequency detail.

– Difference between original and filtered images is what the
filter removed.

• high frequency information.
– Add difference to original image to enhance edges, etc.
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Unsharp Masking

Figure 30: Unsharp masking 7x7 Gaussian kernel
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Unsharp Masking

The sharpened image is the original image plus the unsharp mask
multiplied by some factor.

– The difference image is the unsharp mask!
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Unsharp Masking

Figure 31: Unsharp masking 2D and 5D
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Unsharp Masking

Figure 32: Unsharp masking 11x11 Gaussian kernel
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Unsharp Masking

Figure 33: Unsharp masking 2D and 5D
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Unsharp Masking

Generally don’t want to boost all fine detail as noise would also be
enhanced.

– Adjust the Gaussian parameters.
– Threshold the difference image.
– Care is required to avoid artefacts (e.g. halos).
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Image Filters as Templates

2D Convolution can be thought of as comparing a little picture (the
filter kernel) against all local regions in the image.
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Image Filters as Templates

If the filter kernel contains a picture of something you want to
locate inside the image (a template), the filter response should be
maximised at the local region that most closely matches it.

– We can use image filtering for object location
– Known as Template Matching.
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Image Filters as Templates

Algorithm:

– subtract the mean from the image and template
– convolve the template with the image
– find the location of the maximum response
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Image Filters as Templates

Figure 34: Select a region to form a template.
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Image Filters as Templates

Figure 35: Perform the convolution operation.
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Image Filters as Templates

Figure 36: Locate the maximum filter response.
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Summary

– 2D Convolutions
– Smoothing Filters
– Sharpening and Unsharp masking
– Template matching
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