
Laboratory Sheet – Shape Representations
Computer Vision CMP-6035B / CMP-7026B

Dr. David Greenwood

February 2022

Aims and Objectives
The aim of this lab exercise is to illustrate the steps involved in building the Elliptical Fourier Descriptors
(EFDs) presented in the lectures. As you go along this exercise, you will need to refer to (Kuhl and
Giardina 1982) and the lecture notes.

During the first exercise you will:

• visualise the contour described by the chain code
• build the EFD from the chain code representation
• see how different parameters affect the shape of the Fourier representation
• analyse the code and compare it with the paper and the lecture content

In the second part of the lab, you will complete the Procrustes Analyses algorithm presented in the
lectures.

Exercise 1
The file EFDtoolbox.zip contains the Matlab EFD toolbox. Unzip it and make EFDtoolbox the
working folder in Matlab. Inside you will find several functions. First, open example1.m. The script
contains the chain code description of a contour. It also calls the function which plots the contour and
then it calls another function which plots its Fourier representation. Run the script and have a look at
both contours.

Now let’s have a look at what happens in the plot_chain_code function. Open the file and look inside.
The function does not do much except calling calc_traversal_dist function. Have a look inside this
function.

The function calculates the x and y distances according to two equations which at the first sight look a
bit odd. Note that these equations were not given in the lectures, but they can be found in the paper
on the second page (original page 238). Make sure you understand these equations. Talk to the lab
demonstrator if necessary.

Now, you understand how the traversal distance is calculated so let’s have a look at the
plot_fourier_approx function. Again, it does not do much except calling fourier_approx. Have a
look at the code of this function.

It takes four parameters: chain code (ai), number of harmonic elements (n), number of points for
reconstruction (m) and whether the shape is to be normalised. We did not discuss normalisation at the

1



lecture so we will ignore this part of the code for the time being.

The function fourier_approx calls the calc_harmonic_coefficients. Open this function and see
how the harmonics are calculated. This should correspond to what was given to you at the lecture.
Have a look how the traversal time is calculated in calc_traversal_time. Do you understand the
equation it uses? Again, this is given in the paper on page 238. The remaining equations should
correspond to what we have derived in the lecture which can be also found in the paper.

Now, experiment with the parameters of the plot_fourier_approx function. In particular, see how
the shape changes as you change the number of harmonics.

Set the normalisation flag to 1 and see what happens. Note that as we said in the lectures, the contour is
translated to the origin by setting the DC terms of the EFD to 0. The scale and rotation normalisation
is more complex and this is beyond what we are asking you to analyse, but if you are interested you
can read about it in the paper and later analyse the normalisation code in the relevant part of the
fourier_approx function.

Experiment with the second shape in example2.m.

If you have any questions or problems then please ask the demonstrator!

Exercise 2
During the lecture, we have derived the formulae for aligning shapes using Procrustes’ method. Matlab
has a built-in function called procrustes. Read the reference page of this function from Matlab help.
If you are inquisitive, you can see the code of this built-in function by typing edit procrustes in the
command window. Next, execute and analyse the procrustes_script_fillGaps script (except the
last code cell), which illustrates the use of this function.

In the next step, you will complete the implementation of the version of the procrustes algorithm as de-
rived during the lecture. The skeleton of the algorithm can be found in procrustes_lecture_fillGaps.
You will need to compare this file with the lecture contents and write the three missing lines of code.
Next, you can test this function from the procrustes_script_fillGaps by running the code in the
final cell. Note that also here you will need to write one line of code which is missing.

Compare the results of the two versions of the algorithm. Despite different implementations, initially
they should produce the same result (green crosses will overlap and occlude the blue crosses). This is
despite the fact that unlike Matlab implementation, our lecture implementation does not enforce the
transformation to be a rotation. Now, increase the level of noise in the 9th line of code in the main
script, until the results of the two algorithms start to diverge.

Any questions or problems then please ask the demonstrator!

Kuhl, Frank P, and Charles R Giardina. 1982. “Elliptic Fourier Features of a Closed Contour.”
Computer Graphics and Image Processing 18 (3): 236–58.

2


	Aims and Objectives
	Exercise 1
	Exercise 2


