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Zhang’s Method

A method of finding the intrinsic parameters of a camera.

– Zhang, Z., 2000. A flexible new technique for camera
calibration. IEEE Transactions on pattern analysis and machine
intelligence, 22(11), pp.1330-1334.
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Figure 2: Point to pixel
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Direct Linear Transformation

Compute the 11 intrinsic and extrinsic parameters of a camera.

x = KR[I3| − Xo]X
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Zhang’s Method

Compute the 5 intrinsic parameters in K .

x = KR[I3| − Xo]X
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Zhang’s Method

Camera calibration using images of a checkerboard.

Figure 3: calibration target
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Checkerboard

– Board is of known size and structure.
– The board must be flat.

Figure 4: Calibration targets
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Checkerboard Method

Set the world coordinate system to the corner of the checkerboard.

– do this for each image captured.
– all points lie on x/y plane with z=0

Figure 5: Detected corners
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Simplification

The Z coordinate of each point is zero.
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Simplification

The last column of the rotation matrix has no effect on the system.

– we can delete these components from the system

x
y
1

 =

c s xH
0 c(1 + m) yH
0 0 1


r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3




X
Y
Z
1



12



Simplification

– The Z coordinate of each point is zero.
– Deleting the third column of R gives us:

x
y
1

 =

c s xH
0 c(1 + m) yH
0 0 1


r11 r12 t1

r21 r22 t2
r31 r32 t3


X

Y
1



13



Simplification

– Each observed point gives this equation.
– The intrinsics persist for all images.
– The extrinsics persist for each image.
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Setting up the equations

Define a matrix H:

H =
[
h1, h2, h3

]
=

c s xH
0 c(1 + m) yH
0 0 1


r11 r12 t1

r21 r22 t2
r31 r32 t3


One point generates this equation:
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Setting up the equations

For multiple point observations:

xi
yi
1

 = H
3×3

Xi
Yi
1

 , i = 1..., n

Analogous to the DLT.
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Parameter Estimation

We estimate a 3 × 3 homography instead of 3 × 4 projection.

aT
xi h = 0, aT

yi h = 0

with:

h = vec(HT )
aT

xi = (−Xi , −Yi , −1, 0, 0, 0, xiXi , xiYi , xi)
aT

yi = (0, 0, 0, −Xi , −Yi , −1, yiXi , yiYi , yi)
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Parameter Estimation

Solving the system of linear equations leads to an estimate of the
parameters of H.

– We need to identify at least 4 points.
– H has 8 Dof (degrees of freedom)
– each point provides 2 observations

We now have the parameters of H, how do we find K?
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Decompose Intrinsic Parameters

For the DLT, we could use QR decomposition to find the rotation
matrix of the extrinsic parameters.

– We can not do this for Zhang’s method.
– We eliminated part of R earlier.
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Decompose Intrinsic Parameters

H =
[
h1, h2, h3

]
=

c s xH
0 c(1 + m) yH
0 0 1


︸ ︷︷ ︸

K

r11 r12 t1
r21 r22 t2
r31 r32 t3


︸ ︷︷ ︸

[r1,r2,t]
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Decompose Intrinsic Parameters

We need to extract K from the matrix H = K [r1, r2, t] we
computed using SVD.
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Decompose Intrinsic Parameters

We need to extract K from the matrix H = K [r1, r2, t] we
computed using SVD.

Four step process:

1. Exploit constraints of K , r1, r2
2. Define a matrix B = K−T K−1

3. Solve B using another homogeneous linear system.
4. Decompose B.
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Exploiting Constraints

What constraints do we have?
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Exploiting Constraints

K =

c s xH
0 c(1 + m) yH
0 0 1


K is invertible.
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Exploiting Constraints

H =
[
h1, h2, h3

]
=

c s xH
0 c(1 + m) yH
0 0 1


︸ ︷︷ ︸

K

r11 r12 t1
r21 r22 t2
r31 r32 t3


︸ ︷︷ ︸

[r1,r2,t]

[r1, r2, t] = K−1[h1, h2, h3]

⇒ r1 = K−1h1, r2 = K−1h2
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Exploiting Constraints

As [r1, r2, r3] are the columns of a rotation matrix, they form an
orthonormal basis.

rT
1 r2 = 0, ||r1|| = ||r2|| = 1
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Exploiting Constraints

r1 = K−1h1, r2 = K−1h2, rT
1 r2 = 0, ||r1|| = ||r2|| = 1

hT
1 K−T K−1h2 = 0

hT
1 K−T K−1h1 = hT

2 K−T K−1h2

hT
1 K−T K−1h1 − hT

2 K−T K−1h2 = 0
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Exploiting Constraints

hT
1 K−T K−1h2 = 0

hT
1 K−T K−1h1 − hT

2 K−T K−1h2 = 0
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Exploiting Constraints

Define a matrix B := K−T K−1

hT
1 Bh2 = 0

hT
1 Bh1 − hT

2 Bh2 = 0
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Exploiting Constraints

From B the calibration matrix can be recovered using Cholesky
decomposition.

B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


chol(B) = AAT ⇒ A = K−T

If we know B, we can recover the calibration matrix K .
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Exploiting Constraints

What do we have so far?

hT
1 Bh2 = 0

hT
1 Bh1 − hT

2 Bh2 = 0

– Matrix B, which is symmetric positive, so 6 unknowns.
– h are known.
– Two equations that relate B and h.
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Exploiting Constraints

Define a vector b = (b11, b12, b13, b22, b23, b33)

B =

b11 b12 b13
b12 b22 b23
b13 b23 b33


There are 6 unknowns in B, because it is symmetric.
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Exploiting Constraints

Construct a system of equations V b = 0 exploiting our constraints.

vT
12b = 0, vT

11b − vT
22b = 0
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Matrix V

The matrix V is given by:

V =
[

vT
12

vT
11 − vT

22

]
, with vij =



h1ih1j
h1ih2j + h2ih1j
h3ih1j + h1ih3j

h2ih2j
h3ih2j + h2ih3j

h3ih3j
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Matrix V

For each image we get:

[
vT

12
vT

11 − vT
22

]
b = 0
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Matrix V

For multiple images we stack the matrices to a 2n × 6 matrix:


vT

12
vT

11 − vT
22

. . .
vT

12
vT

11 − vT
22

 b = 0

We need to solve the linear system of V b = 0 to find b and hence
K .
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Solving the Linear System

The system V b = 0 has a trivial solution when b = 0 which will not
provide a valid matrix B.

– Apply additional constraint ||b|| = 1 .
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Solving the Linear System

Real world measurements are noisy.

– Find the solution that minimises the least squares error:

b∗ = argmin
b

||V b|| with ||b|| = 1

Use SVD and choose the singular vector corresponding to the
smallest singular value.
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Minimum Requirements

– At least 4 points in each target image.
– Each target image gives two equations.
– B has 6 DoF so we need 3 different views of the target.
– Solve V b = 0 using SVD to compute K .
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Non-Linear Distortion

How to deal with non-linear distortion?
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Non-Linear Distortion

A general calibration matrix is obtained by multiplying the affine
camera with a general mapping.

aH(x, q)K =

1 0 x∆(x, q)
0 1 y∆(x, q)
0 0 1
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Lens Distortion

Figure 6: barrel and pincushion distortion
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Radial Distortion

A standard approach for radial distortion:

ax = x(1 + q1r2 + q2r4)
ay = y(1 + q1r2 + q2r4)

– with [x , y ]T a point projected by the ideal camera.
– with r the distance from the camera principal point to the pixel.
– q1 and q2 are the radial distortion parameters.
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Lens Distortion

Lens distortion can be calculated by minimising a non-linear
function.

– Make an initial guess for the distortion parameters.
– Calculate K using Zhang’s method.
– Measure the reprojection error.
– Refine the distortion parameters.
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Figure 7: before calibration

Figure 8: after calibration
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Packages

These, and many other methods for calibration, are available in
popular image processing packages.

– OpenCV for python and C++.
– Camera Calibration Toolkit for Matlab.
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https://opencv.org/releases/
http://robots.stanford.edu/cs223b04/JeanYvesCalib/htmls/example.html


Summary

– Pinhole camera model.
– Non-linear model for distortion.
– Calibration using images of a target.

Reading:

– Forsyth, Ponce; Computer Vision: A modern approach.
– Hartley, Zisserman; Multiple View Geometry in Computer

Vision
– Zhang, Z., A flexible new technique for camera calibration.
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