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The Camera

Figure 1: “Sallie Gardner,” owned by Leland Stanford; ridden by G. Domm,
running at a 1:40 gait over the Palo Alto track, 19th June 1878.
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The Camera

Cameras measure light intensities.

– the sensor counts photons arriving at the pixel
– each pixel corresponds to a direction in world space
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The Camera

Cameras can also be seen as direction measurement devices.

– we are often interested in geometric properties of a scene
– an object reflects light to a specific location on the sensor
– Which 3D point is mapped to which pixel?
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The Camera

How do we get the point observations?

– keypoints and features
– SIFT, ORB, etc.
– locally distinct features
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The Camera

Features identify points mapped from the 3D world to the 2D image.
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Pinhole Camera Model
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Figure 2: Light passing through a pinhole camera.
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– f : effective focal length
– ro = (xo, yo, zo)
– ri = (xi , yi , f )
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Figure 3: Camera at the origin.
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Pinhole Camera Model

Using similar triangles, we get the equations of perspective
projection.

ri
f = ro

zo
⇒ xi

f = xo
zo

,
yi
f = yo

zo
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Camera Parameters

Describe how a world point is mapped to a pixel coordinate.
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Camera Parameters

Describe how a world point is mapped to a pixel coordinate.

pixel
coordinate

trans-
formation

world
coordinate

Figure 4: point mapping
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Camera Parameters

We will describe this mapping in homogeneous coordinates.

x
y
1

 = P


X
Y
Z
1



13



Aside: Homogeneous Coordinates

u
v
w

⇒
u/w

v/w
1

⇒ [
u/w
v/w

]
⇒

[
x
y

]
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Coordinate Systems

We have to transform via a number of coordinate systems:

– The world coordinate system
– The camera coordinate system
– The image coordinate system
– The pixel coordinate system
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World to Pixels

o k c s s

Figure 5: World to Pixels
16



World to Pixels

o k c s s

object to camera
3D

Figure 6: World to Camera coordinates
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World to Pixels

o k c s s

object to camera
3D

ideal projection
3D to 2D

Figure 7: Projection to 2D
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World to Pixels

o k c s s

object to camera
3D

ideal projection
3D to 2D

image to sensor
2D

Figure 8: Convert to Sensor coordinates
19



World to Pixels

o k c s s

object to camera
3D

ideal projection
3D to 2D

image to sensor
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Figure 9: Lens Distortions
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Camera Parameters

How do we work with these parameters?

– extrinsic parameters: the pose of the camera in the world
– intrinsic parameters: the properties of the camera

o k c s s

intrinsicsextrinsics

Figure 10: Camera Parameters
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Extrinsic Parameters

The pose of the camera.
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Extrinsic Parameters

– Describe the pose of the camera in the world.
– That is, the position and heading of the camera.
– Invertible transformation.

How many parameters do we need?

– 3 parameters for the position
– 3 parameters for the heading
– There are 6 extrinsic parameters.
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Extrinsic Parameters

Point in world coordinates:

Xp = [Xp, Yp, Zp]T

Origin of camera in world coordinates:

Xo = [Xo, Yo, Zo]T
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Transformation

Translation between origin of world and camera coordinates is:

Xo = [Xo, Yo, Zo]T

Rotation R from world to camera coordinates system is:

kXp = R(Xp − Xo)
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Homogeneous Coordinates

[
kXp

1

]
=

[
R 0
0T 1

] [
I3 −Xo
0T 1

] [
Xp
1

]

=
[

R −RXo
0T 1

] [
Xp
1

]

or:

kXp = kHXp, where kH =
[

R −RXo
0T 1

]
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Intrinsic Parameters

Projecting points from the camera to the sensor.
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Intrinsic Parameters

– projection from camera coordinates to sensor coordinates
– central projection is not invertible
– image plane to sensor is invertible
– linear deviations are invertible

o k c s s

intrinsics

Figure 11: Camera Intrinsics
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Recall for our pinhole model:

cxp = c
kXp
kZp

cyp = c
kYp
kZp

where c is the focal length, or camera constant.
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Homogeneous Coordinates


U
V
W
T

 =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 1 0




kXp
kYp
kZp
1


Drop the 3rd row:

cxp
cyp
1

 =

cup
cvp
cwp

 =

c 0 0 0
0 c 0 0
0 0 1 0




kXp
kYp
kZp
1


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Ideal Camera

The mapping for an ideal camera is:

cx = cPX

with:

cP =

c 0 0 0
0 c 0 0
0 0 1 0

 [
R −RXo
0T 1

]
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Calibration Matrix

We can now define the calibration matrix for an ideal camera.

cK =

c 0 0
0 c 0
0 0 1


The mapping of a point in the world to the image plane is:

cP = cKR[I3| − Xo]
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Linear Errors

The next step is mapping from the image plane to the sensor.

– Location of principal point in sensor coordinates.
– Scale difference in x and y, according to chip design.
– Shear compensation.
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Location of Principal Point

principal
point

x

yx

y

Figure 12: Principal Point

Origin of sensor space is not at
the principal point:

sHc =

1 0 xH
0 1 yH
0 0 1


Compensation is a translation.
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Scale and Shear

– Scale difference m in x and y.
– Sheer compensation s.

We need to add 4 additional parameters to our calibration matrix:

sHc =

1 s xH
0 1 + m yH
0 0 1


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Calibration Matrix

Normally, we combine these compensations with the ideal
calibration matrix:

K =

1 s xH
0 1 + m yH
0 0 1


c 0 0

0 c 0
0 0 1


=

c s xH
0 c(1 + m) yH
0 0 1


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Calibration Matrix

K =

c s xH
0 c(1 + m) yH
0 0 1


There are 5 intrinsic parameters:

– camera constant c
– scale difference m
– principal point offset xH and yH
– shear compensation s
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Projection Matrix

Finally, we have the 3× 4 homogeneous projection matrix:

P = KR[I3| − Xo]

It contains 11 parameters:

– 6 extrinsic parameters
– 5 intrinsic parameters
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Direct Linear Transformation

pixel
coordinate

trans-
formation

world
coordinate

Figure 13: point mapping
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Control Points

Figure 14: known points in the
world

We have control points of
known coordinates in the world.
We want to estimate the camera
parameters, given these points.
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Parameter Estimation

– Goal: camera parameters, P.
– Given: control points in the world, X .
– Observed: coordinates (x , y) in the image.
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Mapping

Direct Linear Transformation (DLT) maps a point in the world to a
point in the image.

x = KR[I3| − Xo]X
= PX
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Camera Parameters

x = KR[I3| − Xo]X = PX

– Intrinsic parameters K
– Extrinsic parameters Xo and R.
– Projection matrix P contains intrinsic and extrinsic parameters.
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Direct Linear Transformation

Compute the 11 intrinsic and extrinsic parameters.
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How many points are needed?

Homogeneous projection:

u
v
w

 = P


U
V
W
T


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Normalised homogeneous projection:

u/w
v/w

1

 = P


U/T
V /T
W /T

1


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Euclidean coordinates:

x
y
1

 = P


X
Y
Z
1


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We can expand the multiplication by P to get the following:

x = p11X + p12Y + p13Z + p14
p31X + p32Y + p33Z + p34

y = p21X + p22Y + p23Z + p24
p31X + p32Y + p33Z + p34

Each point gives two observation equations, one for each image
coordinate.
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How many points are needed?

Each point gives two observation equations, one for each image
coordinate.

We need at least 6 points to estimate 11 parameters.
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Rearrange the DLT Equation

xi = PXi

xi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 Xi
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xi = PXi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 Xi

Define three vectors:

A =


p11
p12
p13
p14

 , B =


p21
p22
p23
p24

 , C =


p31
p32
p33
p34


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xi = PXi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 Xi

Rewrite the equation as:

xi = PXi =

AT

BT

CT

 Xi

52



xi = PXi =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 Xi

Rewrite the equation as:

ui
vi
wi

 = xi = PXi =

AT

BT

CT

 Xi =

AT Xi
BT Xi
CT Xi


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xi =

xi
yi
1

 ,

ui
vi
wi

 =

AT Xi
BT Xi
CT Xi



xi = ui
wi

= AT Xi
CT Xi

, yi = vi
wi

= BT Xi
CT Xi
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System of equations

xi = AT Xi
CT Xi

⇒ xiCT Xi − AT Xi = 0

yi = BT Xi
CT Xi

⇒ yiCT Xi − BT Xi = 0

Leading to a system of linear equations in A, B, and C :

−XT
i A + xiXT

i C = 0
−XT

i B + yiXT
i C = 0
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let:

p =

A
B
C

 = vec(PT ) =



p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34


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−XT
i A +xiXT

i C = 0
− XT

i B +yiXT
i C = 0

rewrite as:

aT
xi p = 0, aT

yi p = 0

with:

p = vec(PT )
aT

xi = (−Xi ,−Yi ,−Zi ,−1, 0, 0, 0, 0, xiXi , xiYi , xiZi , xi)
aT

yi = (0, 0, 0, 0,−Xi ,−Yi ,−Zi ,−1, yiXi , yiYi , yiZi , yi)
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for each point we have:

aT
xi p = 0, aT

yi p = 0

stacking all the points vertically:



aT
x1

aT
y1

aT
x2

aT
y2

. . .
aT

xn
aT

yn


p = Mp != 0

Where M is a 2n × 12 matrix.
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Solving the Linear System

Solving a system of linear equations of the form Ax = 0 is
equivalent to finding the null space of A.

– Apply the Singular Value Decomposition (SVD) to solve
Mp = 0.

– SVD returns a matrix U, S, and V such that M = USV T .
– Choose p as the singular vector belonging to the singular value

of 0.
– Solution is the last column of V .
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Direct Linear Transformation

Does it always work?
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Critical Surfaces

No solution if all points Xi are on a plane.
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Decomposing the Projection Matrix

From P to K , R, Xo
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Decomposing the Projection Matrix

We have P, how do we obtain K , R, Xo?

Structure of P:

P = [KR| − KRXo] = [H|h]

with:

H = KR, h = −KRXo
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Decomposing the Projection Matrix

H = KR, h = −KRXo

We can obtain the projection centre by:

Xo = −H−1h
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Decomposing the Projection Matrix

H = KR

What do we know about these matrices?
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Decomposing the Projection Matrix

Exploit the structure of H = KR

– K is a triangular matrix
– R is a rotation matrix

There is a standard method to decompose a matrix to a rotation
and triangular matrix.

– QR decomposition
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Decomposing the Projection Matrix

We perform a QR decomposition on H−1, given the order of
rotation and triangular matrices.

H−1 = (KR)−1 = R−1K−1 = RT K−1
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Decomposing the Projection Matrix

The Matrix H = KR is homogeneous, therefore so is K , so we must
normalise.

K ← 1
K33

K
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DLT recap

1. Build the matrix M.
2. Solve using SVD; M = U S V T , solution is last column of V .
3. If individual matrices are required, we can use QR

decomposition.
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Summary

– Camera Model
– Intrinsic and Extrinsic Parameters
– Direct Linear Transformation

reading:

– Forsyth, Ponce; Computer Vision: A modern approach. Section
1.3

– Hartley, Zisserman; Multiple View Geometry in Computer
Vision
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