
Introduction to Deep Learning
Computer Vision CMP-6035B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

Spring 2022

1

Content

– ImageNet
– Neural Networks
– MNIST Examples
– Convolutional Neural Networks

2

ImageNet

> 1,000,000 images

> 1,000 classes

3

Actually. . .

> 15,000,000 images

> 20,000 classes

Ground truth annotated manually with Amazon Mechanical Turk.

Freely available for research here: https://www.image-net.org/

4

https://www.image-net.org/

Figure 1: mushrooms Figure 2: landscape

5

ImageNet Top-5 challenge:

You score if ground truth class is one your top 5 predictions!

6

ImageNet in 2012

– Best approaches used hand-crafted features.
– SIFT, HOGs, Fisher vectors, etc. plus a classifier.
– Top-5 error rate: ~25%

7

Then the game changed!

8

AlexNet

In 2012, Krizhevsky et al. used a deep neural network to achieve a
15% error rate.

– AlexNet
– Five convolutional layers. . .
– . . . followed by three fully connected layers.
– ImageNet Classification with Deep Convolutional Neural

Networks.

9

Prior approaches used hand designed features.

Neural networks learn features that help them classify and quantify
images.

10

Neural Networks

What is a neural network?

11

Neural Networks

Multiple layers.

Data propagates through layers.

Transformed by each layer.

12

Neural Network Classifier

Figure 3: Neural Network for classification

13

Neural Network Regressor

Figure 4: Neural Network for regression

14

Figure 5: Neural Network Weights

15

Figure 6: Single Layer

16

– x input vector of size M
– y output vector of size N
– W weight matrix of size M × N
– b bias vector of size N
– f activation function, e.g. ReLU: max(x , 0)

y = f (Wx + b)

17

y = f (Wx + b)

18

Figure 7: Multiple Layers

19

y0 = f (W0x + b0)
y1 = f (W1y0 + b1)

. . .

yL = f (WLyL−1 + bL)

20

Figure 8: Classifier Layers

21

A Neural Network is built from layers, each of which is:

– a matrix multiplication
– a bias
– a non-linear activation function

22

Practical Examples

. . . using PyTorch.

23

Practical Examples

Figure 9: Code Examples

I’ve provided a small repository
of code examples for you to try
out, at:
https://github.com/uea-
teaching/Deep-Learning-for-
Computer-Vision

24

https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision
https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision
https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision

Practical Examples

The first thing to note, is we usually work with batches of input
data.

– or, more strictly, mini-batches.
– For a sample of M values, then a mini-batch of S samples is an

S x M matrix.

25

import torch, torch.nn.functional as F

Assume input_data is S * M matrix
x = torch.tensor(input_data)

W: gaussian random M * N matrix, std-dev=1/sqrt(N)
W = torch.randn(M, N) / math.sqrt(N)

Bias: zeros, N elements
b = torch.zeros(1, N)

y = F.relu(x @ W + b)

26

This is all a bit clunky.

PyTorch provides nice convenient layers for you to use.

27

Assume input_data is S * M matrix
x = torch.tensor(input_data)

Linear layer, M columns in, N columns out
layer = torch.nn.Linear(M, N)

Call the layer like a function to apply it
y = F.relu(layer(x))

28

Training

On order to learn the correct weights, we need to train the model.

29

Training

Define a cost to measure the error between predictions and ground
truth.

30

Training

Use back-propagation to modify parameters so that cost drops
toward zero.

31

Initialisation

Initialise weights randomly.

– We can follow the scheme proposed by He, et al. in 2015.
– We did this earlier, the scaled random normal initialisation.
– Pytorch does this by default, so no need to worry about it.

32

Training

For each example xtrain from the training set.

– Evaluate ypred given the training input.
– Measure the cost: c = (ypred − ytrain)
– Iteratively reduce the cost using gradient descent.

33

Compute the derivative of cost c

– w.r.t. all parameters W and b.

34

Update parameters W and b using gradient descent:

W ′
0 = W0 − λ

∂c
∂W0

b′
0 = b0 − λ

∂c
∂b0

λ is the learning rate: a hyperparameter.

35

Theoretically. . . use the chain rule to calculate gradients.

– This is time consuming.
– Easy to make mistakes.

36

In Practice

Many Neural Network tool-kits do all this for you automatically.

Write the code that performs the forward operations, PyTorch keeps
track of what you did and will compute all the gradients in one step!

37

Computing gradients in PyTorch

Get predictions, no non-linearity
y_pred = layer(x_train)
Cost is mean squared error
cost = ((y_pred - y_train) ** 2).mean()
Compute gradients using 'backward' method
cost.backward()

38

Gradient descent in PyTorch

Create an optimizer to update the parameters of layer
opt = torch.optim.Adam(layer.parameters(), lr=1e-3)

Get predictions and cost as before
y_pred = layer(x_train)
cost = ((y_pred - y_train) ** 2).mean()
Back-prop, zero the gradients attached to params first
opt.zero_grads()
compute gradients
cost.backward()
update the parameters
opt.step()

39

Classification

Final layer has a softmax non-linear function.

The cost is the cross-entropy loss, which is the negative
log-likelihood.

40

Softmax

Softmax produces a probability vector:

q(x) = exi∑N
i=0 exi

41

Classification Cost

Negative log probability (categorical cross-entropy):

– q is the predicted probability.
– p is the true probability (usually 0 or 1).

c = −
∑

pi log qi

42

Classification in PyTorch

Create a nn.CrossEntropyLoss object to compute loss
criterion = torch.nn.CrossEntropyLoss()
Get predicted logits
y_pred_logits = layer(x_train)
Use criterion to compute loss
cost = criterion(y_pred_logits, y_train)
...

43

Regression

To quantify something, with real-valued output.

Cost: Mean squared error.

44

Mean Squared Error

– q is the predicted value.
– p is the true value.

c = 1
N

N∑
i=0

(qi − pi)2

45

Regression in PyTorch

Create a nn.CrossEntropyLoss object to compute loss
criterion = torch.nn.MSELoss()
Get predicted logits
y_pred_logits = layer(x_train)
Use criterion to compute loss
cost = criterion(y_pred_logits, y_train)
...

46

Training

Randomly split the training set into mini-batches of approximately
100 samples.

– Train on a mini-batch in a single step.
– The mini-batch cost is the mean of the costs of all samples in

the mini-batch.

47

Training on mini-batches means that ~100 samples are processed in
parallel.

– Good news for GPUs that do lots of operations in parallel.

48

Training on enough mini-batches to cover all examples in the
training set is called an epoch.

– Run multiple epochs (often 200-300), until the cost converges.

49

Training - Recap

1. Take mini-batch of training examples.
2. Compute the cost of the mini-batch.
3. Use gradient descent to update parameters and reduce cost.
4. Repeat, until done.

50

Multi-Layer Perceptron

The simplest network architecture. . .

51

Multi-Layer Perceptron (MLP)

Figure 10: dense layer

Dense layer
Each unit is connected to all
units in previous layer.

52

MNIST Example

The “Hello World” of neural networks.

Figure 11: MNIST-MLP

53

class Model(nn.Module):
def __init__(self):

super().__init__()
self.input = nn.Linear(784, 256)
self.hidden = nn.Linear(256, 256)
self.output = nn.Linear(256, 10)

def forward(self, x):
x = x.view(x.shape[0], -1)
x = F.relu(self.input(x))
x = F.relu(self.hidden(x))
return self.output(x)

54

class Model(nn.Module):
def __init__(self):

super().__init__()
self.input = nn.Linear(784, 256)
self.hidden = nn.Linear(256, 256)
self.output = nn.Linear(256, 10)

def forward(self, x):
x = x.view(x.shape[0], -1)
x = F.relu(self.input(x))
x = F.relu(self.hidden(x))
return self.output(x)

55

class Model(nn.Module):
def __init__(self):

super().__init__()
self.input = nn.Linear(784, 256)
self.hidden = nn.Linear(256, 256)
self.output = nn.Linear(256, 10)

def forward(self, x):
x = x.view(x.shape[0], -1)
x = F.relu(self.input(x))
x = F.relu(self.hidden(x))
return self.output(x)

56

MNIST

MNIST is quite a special case.

– Digits nicely centred within the image.
– Scaled to approximately the same size.

57

Visualisation

Figure 12: MNIST Samples Figure 13: Weight Visualisation

58

Visualisation

Note the stroke features detected by the various units.

Figure 14: MNIST Samples Figure 15: Weight Visualisation

59

Visualisation

Learned features lack translation invariance.

Figure 16: MNIST Samples Figure 17: Weight Visualisation

60

For more general imagery:

– Require a training set large enough to see all features in all
possible positions.

– Require network with enough units to represent this.

61

Convolutional Neural Networks

The computer vision revolution. . .

62

Convolution

We have already discussed convolution.

– Slide a filter, or kernel, over the image.
– Multiply image pixels by filter weights and sum.
– Do this for all possible positions of the filter.

63

Convolution

Figure 18: Convolution

64

Convolution

Figure 19: Gabor Filter

65

Convolution

Convolution detects features in a position independent manner.

Convolutional neural networks learn position independent filters.

66

Recap: Fully Connected Layer
Each hidden unit is fully connected to all inputs.

Figure 20: Fully Connected Layer

67

Convolution

Each hidden unit is only connected to inputs in its local
neighbourhood.

Figure 21: Convolution Detections

68

Convolution

Each group of weights is shared between all units in the layer.

Figure 22: Shared Weights

69

Convolution

The values of the weights form a filter.

For practical computer vision, more than one filter must be used to
extract a variety of features.

70

Convolution

Figure 23: Multiple Filters

Multiple filter weights.
Output is image with multiple
channels.

71

Convolution

Convolution can be expressed as multiplication by weight matrix.

y = f (Wx + b)

72

Convolution

In subsequent layers, each filter connects to pixels in all channels in
previous layer.

73

Max Pooling

Figure 24: Max Pooling

Take the maximum from each
(p × p) pooling region.
Down sample the image by a
factor of p.

74

Striding

We can also down-sample using strided convolution.

– Generate output for 1 in every n pixels.
– Faster, can work as well as max-pooling.

75

ConvNetJS

Visualisations are avalable at ConvNetJS by Andrej Karpathy.

https://cs.stanford.edu/people/karpathy/convnetjs/index.html

Source code for the site is available at:

https://github.com/karpathy/convnetjs

76

https://cs.stanford.edu/people/karpathy/convnetjs/index.html
https://github.com/karpathy/convnetjs

Summary

– ImageNet
– Neural Networks
– MNIST Examples
– Convolutional Neural Networks

77

	Content
	ImageNet
	Neural Networks
	Practical Examples
	Multi-Layer Perceptron
	Convolutional Neural Networks
	ConvNetJS
	Summary

