
Practical Deep Learning
Computer Vision CMP-6035B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

Spring 2022

1



Content

– Convolutional Neural Network (CNN)
– Transfer Learning
– Tricks of the Trade
– Work in the Field

2



Convolutional Neural Network (CNN)

A simplified LeNet for MNIST digits.

– Gradient Based Learning Applied to Document Recognition.
LeCun, et al. 1998

3



Images as Tensors

Images are sampled on a 2D grid.

– Greyscale 2D h × w
– RGB Images have a 3rd channel dimension.
– Feature images, inside the network, can have many channels.

4



Images as Tensors

In Pytorch, the channel dimension is before the spatial dimensions.

C × H × W

5



Images as Tensors

When training Neural Networks, we use mini-batches.

S × C × H × W

Hence, we pass 4D Tensors to the network.

6



Figure 1: Simplified LeNet for MNIST

7



MNIST CNN in PyTorch

class Model(torch.nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(800, 256)
self.output = nn.Linear(256, 10)

8



MNIST CNN in PyTorch

...
def forward(self, x):

x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 800)
x = F.relu(self.fc1(x))
x = self.output(x)
return x

9



After 300 iterations over training set: 99.21% validation accuracy.

Model Error

FC64 2.85%
FC256-FC256 1.83%
SimpLeNet 0.79%

10



Learned Kernels

Figure 2: Image from Krizhevsky 2012

11



Figure 3: Image from Zeiler 2014

12



Figure 4: Image from Zeiler 2014

13



Transfer Learning

Original AlexNet trained for 90 epochs, using 2 GPUs and took 6
days!

14



Pre-Trained Networks

The term “Transfer Learning” simply means using a pre-trained
network to save on training.

– Motivation enough to use a pre-trained network.
– but, there are bigger considerations.
– What about data?

15



Pre-Trained Networks

The greatest barrier to supervised machine learning is the lack of
labelled data.

– use a network trained on one task to solve another problem
– greatly reduces the requirement for labelled data

16



Researchers have developed neural network architectures for
Computer Vision tasks.

– The parameters of these networks have been made available for
further research.

17



What can we use transfer learning for?

– classifying images not part of the original ImageNet dataset.
– object detection
– boundary detection

18



VGG16

The VGG group at Oxford university trained VGG-16 and VGG-19
for ImageNet classification.

– Karen Simonyan & Andrew Zisserman, (2014)

19



VGG16

VGG-16 is a good choice for a first step in transfer learning.

It has a relatively simple architecture:

– Convolutional layers, increasing in depth, decreasing spatially.
– fully-connected layers for classification.
– Max-pooling layers.
– ReLU activation functions.

20



VGG16
conv1

conv2

conv3

conv4
conv5

fc6 fc7 fc8

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512

14 x 14 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

Figure 5: VGG16 - architecture
21



VGG16

This kind of architecture works well for many Computer Vision tasks.

– Small convolutional filters (3x3)
– Max-pooling layers
– ReLU activation functions

22



Transfer Learning

Two strategies for transfer learning are:

– Fine tuning the whole network on new data, with a small
learning rate.

– Leave all the early layers as is and use as a feature extractor.
– In both cases, we usually have to replace the last

fully-connected layers.

23



Transfer Learning

Figure 6: Code Examples

There are examples of both fine
tuning and feature extraction at
the example repository:
https://github.com/uea-
teaching/Deep-Learning-for-
Computer-Vision

24

https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision
https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision
https://github.com/uea-teaching/Deep-Learning-for-Computer-Vision


Tricks of the Trade

Best practice. . .

25



Data Standardisation

Ensure zero-mean and unit standard deviation.

– In numerically diverse data, learning will be dominated by
larger values.

– Arguably less important with image data.
– Many pre-trained networks expect standardised data.

26



Data Standardisation

For regression tasks, we need to standardise the output data too.

– Don’t forget to invert the predictions back to the original scale.

27



Data Standardisation

Extract sample data: pixel values in the case of images.

Compute the mean and standard deviation of the samples.

x ′ = x − µ(x)
σ(x)

28



Batch Size

Small batch sizes, approximately 1-10.

– Small batch size results in regularisation, with lower ultimate
error.

– Low memory requirements.
– Need to compensate with lower learning rate.
– More epochs required.

29



Batch Size

Large batch sizes, greater than 500-1000.

– Fast due to high parallelism
– High memory usage - can run out of RAM on large networks.
– Won’t reach the same error rate as smaller batches.
– may not learn at all. . .

30



Batch Size

Typical choice around 64-256, lots of experiments use ~100.

– Effective training - reaches acceptable error rate or loss.
– Balanced between speed and memory usage.

31



Batch Size

Increasing mini-batch size will improve performance up to the point
where all GPU units are in use.

Increasing it further will not improve performance; it will reduce
accuracy!

32



Learning Rate

The amount of change applied to the parameters at each iteration.

– Small learning rates can be slow to train.
– Small learning rates can get stuck in local minima.
– Large learning rates can be unstable and cause divergence.
– Experiment with different learning rates.
– Increase or decrease by a factor of 10.

33



DropOut

Over-fitting is a well-known problem in machine learning.

– Dropout reduces over-fitting.

34



DropOut

During training, randomly choose units to ‘drop out’.

– Set output to 0, with probability P, usually around 0.5.
– Compensate by multiplying other values by 1

1−P .
– Turn off dropout during testing.

35



DropOut

Activates a different subset of units for each sample.

– Causes units to learn more robust features.
– Units can’t rely on the presence of specific features.
– Emulates an ensemble of models.

36



DropOut

“I went to my bank. The tellers kept changing and I asked one of
them why? He said he didn’t know but they got moved around a lot.
I figured it must be because it would require cooperation between
employees to successfully defraud the bank. . . This made me realise
that randomly removing a different subset of neurons on each
example would prevent conspiracies and thus reduce over fitting.”

37



Batch normalisation

Batch normalization (Ioffe, et al. 2015).

– Recommended in most cases.
– Lets you build deeper networks.
– Speeds up training; loss and error drop faster per epoch.

38



Batch normalisation

Apply between internal layers.

– Use BatchNorm2d with a convolutional layer.
– Use BatchNorm1d with a fully-connected layer.

39



Batch normalisation

Standardise activations per-channel between network layers.

Solves problems caused by exponential growth or shrinkage of layer
activations in deep networks.

40



Dataset augmentation

Reduce over-fitting by enlarging training set.

– Artificially modify existing training samples to make new ones.
– Apply transformations such as move, scale, rotate, reflect, etc.

41



Work in the Field

Some interesting work in the field. . .

42



Figure 7: Adversarial attacks

Robust Physical-World Attacks
on Deep Learning Models.
Eykholt, et al. 2018.

43



Accessorize to a Crime: Real and Stealthy Attacks on
State-of-the-Art Face Recognition. Sharif, et al. 2016.

Figure 8: Accessorize to a Crime

44



Generative Adversarial Networks

Generative Adversarial Nets. Goodfellow et al. 2014.

Train two networks; one given random parameters to generate an
image, another to discriminate between a generated image and one
from the training set.

45



Unsupervised representation Learning with Deep Convolutional
Generative Adversarial Nets. Radford, et al. 2015.

Figure 9: DCGAN

46



Figure 10: DCGAN vector arithmetic

47



A Style-Based Generator Architecture for Generative Adversarial
Networks. Karras, et al. 2018

Figure 11: Style GAN

48



Summary

– Convolutional Neural Networks
– Transfer Learning
– Useful techniques
– Deep learning examples.

Reading:

– Deep Learning, Goodfellow et al:
https://www.deeplearningbook.org

– the papers mentioned in the lecture
– visualisations of network training: https://losslandscape.com

49


	Content
	Convolutional Neural Network (CNN)
	Transfer Learning
	Tricks of the Trade
	Work in the Field
	Summary

