Epipolar Geometry

Computer Vision CMP-6035B

Dr. David Greenwood

Spring 2022

Contents

  • Motivation
  • Epipolar Geometry
  • Epipolar Elements
  • Point Correspondences

Motivation

Given \(x'\) in the first image, find the corresponding point \(x''\) in the second image.

  • Coplanarity constraint
  • Intersection of two corresponding rays
  • The rays lie in a 3D plane
Coplanarity

Epipolar Geometry

  • describe geometric relations in image pairs
  • efficient search and prediction of corresponding points
  • search space reduced from 2D to 1D

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Epipolar elements:

  • epipolar axis \(\mathcal{B} = (O' O'')\)
  • epipolar plane \(\mathcal{E} = (O' O'' X)\)
  • epipoles \(e' = (O'')', e'' = (O')''\)
  • epipolar lines \(\mathcal{L}'(X) = (O'' X)', \mathcal{L}''(X) = (O' X)''\)

We can also write the epipoles as:

\[ e' = (O' O'') \cap \mathcal{E}', \quad e'' = (O' O'') \cap \mathcal{E}'' \]

And the epipolar lines as:

\[ \mathcal{L}'(X) = \mathcal{E} \cap \mathcal{E}', \quad \mathcal{L}''(X) = \mathcal{E} \cap \mathcal{E}'' \]

Epipolar Geometry

In the Epipolar Plane

Assuming a distortion free lens:

  • The projection centres \(O'\) and \(O''\).
  • The observed point \(X\).
  • The epipolar lines, \(\mathcal{L}'(X)\) and \(\mathcal{L}''(X)\).
  • The epipoles, \(e'\) and \(e''\).
  • The image points \(x'\) and \(x''\).

In the Epipolar Plane

  • The projection centres \(O'\) and \(O''\).
  • The observed point \(X\).
  • The epipolar lines, \(\mathcal{L}'(X)\) and \(\mathcal{L}''(X)\).
  • The epipoles, \(e'\) and \(e''\).
  • The image points \(x'\) and \(x''\).

All lie in the epipolar plane \(\mathcal{E}\).

Predicting Point Correspondence

Task: Predict the location of \(x''\) given \(x'\).

  • For the epipolar plane \(\mathcal{E} = (O'O''X)\)
  • The intersection of \(\mathcal{E}\) and the second image plane \(\mathcal{E}''\) yields the epipolar line \(\mathcal{L}''(X)\)
  • The corresponding point \(x''\) lies on that epipolar line \(\mathcal{L}''(X)\).
  • Search space is reduced from 2D to 1D.

Computing the Elements of Epipolar Geometry

Computing the Elements of Epipolar Geometry

  • We described the important elements geometrically.
  • We will compute them using the projection matrices and the fundamental matrix.

Epipolar Axis

The direction of the epipolar axis can be derived directly from the projection centres.

\[ b = X_{O'} - X_{O''} \]

The vector \(b\) is homogeneous, we know only the direction, not the length.

Epipolar Lines

Image points lie on the epipolar lines.

\[ x' \in \mathcal{L}' , \quad x'' \in \mathcal{L}'' \]

Epipolar Lines

For \(x'\):

\[ x^{'T} \mathcal{L}' = 0 \]

Epipolar Lines

For \(x'\):

\[ x^{'T} \mathcal{L}' = 0 \]

We can exploit the coplanarity constraint for \(x'\) and \(x''\):

\[ x^{'T} \underbrace{Fx''}_{\mathcal{L}'} = 0 \]

Epipolar Lines

We can exploit the coplanarity constraint for \(x'\) and \(x''\):

\[ x^{'T} \underbrace{Fx''}_{\mathcal{L}'} = 0 \]

\[ \mathcal{L}' = Fx'' \]

Epipolar Lines

The same for \(x''\):

\[ \mathcal{L}^{''T} x'' = 0 \]

We can exploit the same constraint \(x^{'T}Fx''= 0\) and obtain:

\[ \mathcal{L}^{''T} = x^{'T}F \]

Epipolar Lines

We can exploit the same constraint \(x^{'T}Fx''= 0\) and obtain:

\[ \mathcal{L}^{''T} = x^{'T}F \]

\[ \mathcal{L}^{''} = F^{T}x^{'} \]

Epipolar Lines

Image points lie on the epipolar lines, \(x' \in \mathcal{L}'\) and \(x'' \in \mathcal{L}''\).

  • we can exploit the coplanarity constraint \(x^{'T}Fx''= 0\).
  • which is valid if:

\[ \mathcal{L}' = Fx'' \quad \mathcal{L}'' = F^{T}x' \]

Epipoles

The epipoles are the projection of the camera origin onto the other image.

  • Both can be computed using the projection matrices.

Epipoles

The epipoles are the projection of the camera origin onto the other image.

  • Both can be computed using the projection matrices.

\[ e' = P'X_{O''} \quad e'' = P''X_{O'} \]

Epipoles

The epipole is the intersection of all the epipolar lines in an image.

\[ \forall \mathcal{L}' : e^{'T} \mathcal{L}' = 0 \quad \forall \mathcal{L}'' : e^{''T} \mathcal{L}'' = 0 \]

Summary

  • We assumed an uncalibrated camera.
  • We discussed Epipolar geometry and epipolar elements.
  • Epipolar geometry reduces the correspondence search from 2D to 1D.

Reading:

  • Forsyth, Ponce; Computer Vision: A modern approach.
  • Hartley, Zisserman; Multiple View Geometry in Computer Vision.

Data:

// reveal.js plugins