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Visual Features

Figure 1: keypoints

Why do we want to find image
features?

– Image summary.
– Classification.
– Image retrieval.
– 3D reconstruction.
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How do we describe keypoints in a way that similar points can be
matched?

Figure 2: view 1 Figure 3: view 2

4



Keypoint and Descriptor

An important distinction:

– Keypoint is a distinct location in an image
– Descriptor is a summary description of that neighbourhood.

5



Keypoint and Descriptor

Figure 4: keypoints and descriptors
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descriptor at the keypoint:
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Descriptors

– HOG: Histogram of Oriented Gradients
– SIFT: Scale Invariant Feature Transform
– SURF: Speeded-Up Robust Features
– GLOH: Gradient Location and Orientation Histogram
– BRIEF: Binary Robust Independent Elementary Features
– ORB: Oriented FAST and rotated BRIEF
– BRISK: Binary Robust Invariant Scalable Keypoints
– FREAK: Fast REtinA Keypoint

. . . and many more
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Descriptors

Describing a keypoint.

– SIFT : Scale-Invariant Feature Transform
– BRIEF : Binary Robust Independent Elementary Features
– ORB : Oriented FAST and Rotated BRIEF
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SIFT

Scale-Invariant Feature Transform
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SIFT Features

Image content is transformed into features that are invariant to:

– image translation
– image rotation
– image scale
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SIFT Features

SIFT Features are partially invariant to:

– illumination changes
– affine transformations and 3D projections
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SIFT Features

SIFT Features are suitable for detecting visual landmarks:

– from different angles and distances.
– with a different illumination.
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DoG over Scale-Space Pyramid

Over different image pyramid levels:

1. Gaussian smoothing.
2. Difference-of-Gaussians (DoG) and find extrema.
3. Maxima suppression for edges.
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SIFT Features

A SIFT feature is given by a vector computed at a local extreme
point in the scale space.

⟨p, s, r , f ⟩
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SIFT Features

Figure 5: SIFT vector
15



SIFT Features

location scale orientation 128D descriptor

viewpoint dependent viewpoint independent

Figure 6: SIFT vector
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SIFT Features

Figure 7: Input Image - Vedaldi &
Fulkerson

From an input image we convert
to grey scale then compute the
Difference of Gaussians (DoG)
and find the extrema.
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SIFT Features

Figure 8: Keypoints, scale and
orientation

We preserve the scale, and
compute a peak of the
histogram of orientations.

18



SIFT Features

Figure 9: locally rotated patch

We compute a local patch,
based on the scale and
orientation.
It is from this patch we compute
the 128D feature descriptor
vector.
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SIFT Descriptor

Compute image gradients in local 16x16 area at the selected scale.

– Create an array of orientation histograms
– 8 orientations x 4x4 histogram array = 128 dimensions
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SIFT Descriptor

Figure 10: sift descriptor
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SIFT Descriptor

Figure 11: rotate and scale to 16x16
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SIFT Descriptor

Figure 12: gradients and segregate to 16 x 4x4 regions
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SIFT Descriptor

Figure 13: 4x4 region to 8 direction bins
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SIFT Descriptor

Concatenate all histograms to form a 128D vector.

Figure 14: concatenate histograms
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SIFT Descriptor

Figure 15: Descriptor Summary
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SIFT Features

Keypoints : Using DoG

Descriptor : Using Gradient Histogram
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Dense SIFT

Variation of the SIFT feature, where the keypoints are sampled over
a uniform grid in the image domain, rather than using the sparse
points from the DoG.
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Dense SIFT

At each uniform grid point:

– Compute the SIFT descriptor.
– Cluster the descriptors into a vocabulary.
– K-means clustering.
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Matching

How do we match features from two images?
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Figure 16: view 1 Figure 17: view 2
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Distance Matching

Figure 18: descriptor distance
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Ratio Test

Eliminate ambiguous matches for a query feature q.

1. Find closest descriptors, p1 and p2 using Euclidian distance.

2. Test if distance to best match is smaller than a threshold:

d(q, p1) < t

3. Accept only if the best match is substantially better than
second:

d(q, p1)
d(q, p2) <

1
2
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Ratio Test

Figure 19: ratio test

34



Ratio Test

Lowe’s Ratio test works well.

– There will still be a few outliers.
– Outliers require extra treatment.
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Binary Descriptors

Computing descriptors fast
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Why Binary Descriptors?

Complex features such as SIFT work well, but. . .

– SIFT is expensive to compute.
– SIFT has had patenting issues.
– Binary descriptors are easy to compute and compare.
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Key Idea of Binary Descriptors

– Select a region around a keypoint.
– Select a set of pixel pairs in that region
– For each pair, compare the intensities.
– concatenate all b to a string.

b =
{

1, if I(s1) < I(s2)
0, otherwise

38



Example

Figure 20: image region Figure 21: region index

– pairs: {(5, 1), (5, 9), (4, 6), (8, 2), (3, 7)}
– test: b = 0, b = 0, b = 0, b = 1, b = 1
– result: B = 00011
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Advantages of Binary Descriptors

Compact descriptor

– The number of pairs gives the length in bits
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Advantages of Binary Descriptors

Fast to compute

– Simply intensity value comparisons
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Advantages of Binary Descriptors

Trivial and fast to compare Hamming distance:

dHamming(B1, B2) = sum(xor(B1, B2))
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Different binary descriptors differ mainly by the strategy of selecting
the pairs.
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Important

In order to compare descriptors we must:

– Use the same pairs
– Maintain the same order in which the pairs are tested.
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BRIEF

Binary Robust Independent Elementary Features.

– BRIEF: Binary Robust Independent Elementary Features.
– Calonder, et al. 2010.
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BRIEF

First binary image descriptor.

– Proposed in 2010
– 256 bit descriptor
– Provides five different sampling strategies
– Operations performed on a smoothed image to deal with noise
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Figure 22: BRIEF sampling pairs
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BRIEF sampling pairs

– G I: Uniform random sampling
– G II: Gaussian sampling
– G III: s1 Gaussian; s2 Gaussian centred around s1 .
– G IV: Discrete location from a coarse polar grid.
– G V: s1 = (0, 0), s2 are all locations from a coarse polar grid.
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Figure 23: BRIEF sampling performance
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ORB

Oriented FAST Rotated BRIEF.

– ORB: an efficient alternative to SIFT or SURF
– Rublee, et al. 2011.

50



ORB

An extension to BRIEF that:

– Adds rotation compensation.
– Learns the optimal sampling pairs.
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ORB: Rotation Compensation

Estimates the centre of mass and the main orientation of the local
area.

Image moment:

mpq =
∑
x ,y

xpyqI(x , y)

Centre of Mass, Orientation:

C =
(m10

m00
,
m01
m00

)
, θ = arctan 2(m01, m10)
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ORB: Rotation Compensation

Rotate the coordinates of all pairs by θ around C :

s ′ = T (C , θ)s

– Use the transformed pixel coordinates for performing the test.
– Rotation is invariant in the image plane.
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ORB: Learning Sampling Pairs

Pairs should be uncorrelated.

– each new pair adds new information to the descriptor

Pairs should have high variance.

– makes a feature more discriminative

ORB defines a strategy for selecting 256 pairs, optimising for these
properties using a training database.
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ORB versus SIFT

– ORB is 100x faster than SIFT
– ORB: 256 bit vs. SIFT: 4096 bit
– ORB is not scale invariant (achievable via an image pyramid)
– ORB mainly in-plane rotation invariant
– ORB has a similar matching performance as SIFT (w/o scale)
– Several modern online systems (e.g. SLAM) use binary features

55



Summary

– Keypoint and descriptor together define visual features
– Descriptor describes the appearance
– SIFT
– Binary descriptors

Reading:

– The papers mentioned in the lecture
– Forsyth, Ponce; Computer Vision: A modern approach, 2nd ed.
– VLFeat.org - nice tutorials.

56

https://www.vlfeat.org
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