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Visual Features

Figure 1: keypoints

We want to find locally distinct
features in an image.

– How do we find these
features?

– How do we describe them?
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Visual Features

Figure 2: keypoints

We can take advantage of these
locally distinct features for:

– image classification
– image retrieval
– correspondence between

two images
– 3D reconstruction
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Visual Features

Figure 3: view 1 Figure 4: view 2
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Keypoint and Descriptor

An important distinction:

– Keypoint is a distinct location in an image
– Descriptor is a summary description of that neighbourhood.
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Keypoint and Descriptor

Figure 5: view 1

keypoint: (x , y)
descriptor at the keypoint:
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Keypoints

Finding locally distinct points.

– Harris Corner Detection
– Shi-Tomasi Corner Detection
– Förstner operator
– Difference of Gaussians (DoG)
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Corners

Corners are often highly distinct points.
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Corners

Figure 6: view 1 Figure 7: view 2
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Corners

– Corners are often highly distinct points.
– Edges are a rapid change in pixel value.
– Corners are formed from two orthogonal edges.
– Corners are invariant to translation, rotation and illumination.
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Finding Corners

To find corners we need to search for intensity changes in two
directions.
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Finding Corners

Compute the SSD of pixels in the neighbourhood W around (x , y).

f (x , y) =
∑

(u,v)∈Wx,y

(I(u, v) − I(u + δu, v + δv))2
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Finding Corners

f (x , y) =
∑

(u,v)∈Wx,y

(I(u, v) − I(u + δu, v + δv))2

Using Taylor expansion, with Jacobian [Jx , Jy ]:

I(u + δu, v + δv) ≈ I(u, v) + [Jx , Jy ]
[
δu
δv

]
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Finding Corners

Taylor approximation leads to:

f (x , y) =
∑

(u,v)∈Wx,y

(
[Jx , Jy ]

[
δu
δv

])2

Written in matrix form:

f (x , y) =
∑

(u,v)∈Wx,y

[
δu
δv

]T [
J2

x JxJy
JxJy J2

y

] [
δu
δv

]
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Finding Corners

Given:

f (x , y) =
∑

(u,v)∈Wx,y

[
δu
δv

]T [
J2

x JxJy
JxJy J2

y

] [
δu
δv

]

Move the summation inside the matrix:

f (x , y) =
[
δu
δv

]T [ ∑
W J2

x
∑

W JxJy∑
W JxJy

∑
W J2

y

] [
δu
δv

]
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Structure Matrix

M =
[ ∑

W J2
x

∑
W JxJy∑

W JxJy
∑

W J2
y

]
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Structure Matrix

– The structure matrix is key to finding edges and corners.
– Encodes the image intensity changes in a local area.
– built from image gradients.

M =
[ ∑

W J2
x

∑
W JxJy∑

W JxJy
∑

W J2
y

]
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Structure Matrix

Matrix built from image gradients.

M =
[ ∑

W J2
x

∑
W JxJy∑

W JxJy
∑

W J2
y

]

Jacobians computed by convolution with gradient kernel, e.g. Sobel:

J2
x = (Dx ∗ I)2

JxJy = (Dx ∗ I)(Dy ∗ I)
J2

y = (Dy ∗ I)2
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Structure Matrix

Matrix built from image gradients.

M =
[ ∑

W J2
x

∑
W JxJy∑

W JxJy
∑

W J2
y

]

Jacobians using Sobel:

Dx =

1 2 1
0 0 0

-1 -2 -1

 , Dy =

1 0 -1
2 0 -2
1 0 -1


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Structure Matrix

Summarises the dominant gradient directions around a point.

M =
[ ∑

W J2
x

∑
W JxJy∑

W JxJy
∑

W J2
y

]
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Structure Matrix

Figure 8: corner

M =
[
≫ 1 ≈ 0
≈ 0 ≫ 1

]
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Structure Matrix

Figure 9: edge

M =
[
≫ 1 ≈ 0
≈ 0 ≈ 0

]
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Structure Matrix

Figure 10: flat

M =
[
≈ 0 ≈ 0
≈ 0 ≈ 0

]
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Corners from Structure Matrix

Consider points as corners if their structure matrix has two large
Eigenvalues.

Figure 11: corner

M =
[
≫ 1 ≈ 0
≈ 0 ≫ 1

]
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Corner Detection

Three similar approaches. . .
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Harris, Shi-Tomasi and Förstner

Three similar approaches:

– 1987 Förstner
– 1988 Harris
– 1994 Shi-Tomasi

All rely on the structure matrix.

– Use different criteria for deciding if a point is a corner
– Förstner offers subpixel estimation
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Harris Corner Criterion

Criterion:

R = det(M) − k(trace(M))2

= λ1λ2 − k(λ1 + λ2)2

with k ∈ [0.04, 0.06]:

|R| ≈ 0 ⇒ λ1 ≈ λ2 ≈ 0
R < 0 ⇒ λ1 ≫ λ2 or λ2 ≫ λ1

R ≫ 0 ⇒ λ1 ≈ λ2 ≫ 0
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Figure 12: Harris Criterion
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Shi-Tomasi Criterion

Threshold smallest Eigenvalue:

λmin(M) = trace(M)
2 − 1

2

√
trace(M)2 − 4det(M)

corner:

λmin(M) ≥ T
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Figure 13: Shi-Tomasi Criterion
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Förstner Criterion

– Similar to Harris corner detector.
– Criterion defined on the covariance matrix of possible shifts -

inverse of M.
– Similar criteria on error ellipse.
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Non-Maxima Suppression
Within a local region, look for position with maximum value R.

Which would be maximum here?

Figure 14: non-maxima suppression
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Harris Corner Example

Figure 15: view 1 Figure 16: view 2
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Corner Detection in Practice

– RGB to grey scale conversion.
– Real images are noisy, so smoothing is recommended.
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Corner Detection Algorithm

– Convolution with Sobel to obtain x , y derivatives.
– Multiplication of x , y derivatives to get JxJx , Jy Jy , JxJy .
– Summation of region, using box filter convolution.
– Apply criterion, e.g finding Eigenvalues.

36



Corner Detectors Compared

– All three detectors perform similarly.
– Förstner was first and also described subpixel estimation.
– Harris became the most popular corner detector.
– Shi-Tomasi seems to slightly outperform Harris.
– Many libraries use Shi-Tomasi as the default corner detector.
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Difference of Gaussians

Difference of Gaussians (DoG)

Detecting edges, corners, and blobs. . .
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DoG Keypoints

A variant of corner detection.

– Provides responses at corners, edges, and blobs.
– Blob = mainly constant region but different to its surroundings.
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DoG over Scale Space Pyramid

Over different image pyramid levels

1. Gaussian smoothing
2. Difference-of-Gaussians: find extrema (over smoothing scales).
3. maximal suppression at edges.
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Difference of Gaussians

Figure 17: DoG - different image blurs
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Difference of Gaussians

Figure 18: DoG - search

We search in (x , y) and in the
third dimension.
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Difference of Gaussians

Figure 19: DoG - octaves
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Difference of Gaussians

Figure 20: DoG - example

44



Difference of Gaussians

Figure 21: Gaussian - smoothing scale
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Difference of Gaussians

Blurring filters out high-frequencies (noise).

Subtracting differently blurred images from each other only keeps
the frequencies that lie between the blur level of both images

DoG acts as a band-pass filter.
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Difference of Gaussians

keypoints are the local extrema in the DoG over different scales.

47



Difference of Gaussians

The DoG finds blob-like and corner-like image structures but also
has strong responses along edges.

– Edges are undesirable for matching.
– Eliminate edges via Eigenvalue test.
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Summary

Two approaches for finding locally distinct points.

– Corners using the Structure Matrix.
– Difference of Gaussians

Reading:

– Forsyth, Ponce; Computer Vision: A modern approach, 2nd ed.
– A Combined Corner and Edge Detector, Harris, et al. 1988.
– Good Features to Track. Shi & Tomasi. 1994.
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