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Image Classification

Passing a whole image to a classifier.
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Feature Extraction

What are good features?
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Feature Extraction

The main difficulty in solving these image classification problems is
finding good image features.
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What are good features?

– Good features should exhibit between-class variation.
– Good features should suppress within-class variation.
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Other desirable properties of features are:

– invariant to rotation, translation and scaling of an image
– invariant to illumination
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What are good features?

Figure 1: texture for features

Texture is a good feature, and
often provides good diagnostics.

– e.g. summary statistics on
gradient orientations
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Figure 2: kitchen 1

Figure 3: kitchen 2

Exact feature locations are not
important.

– Small variations in the
layout will not change the
class label.
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Classification Applications

Classify an X-ray image as containing cancer or not.

– A binary classification problem.
– Normally requires significant human expertise!
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Material classification, eg. wood, metal, plastic, etc.

– Texture is likely useful, but. . .
– Illumination may significantly change the texture.
– Extract features invariant to illumination.

11



Scene classification e.g. kitchen, bathroom, beach.

– Importance of context.
– Scenes contain many objects, but their exact location is less

important.

12



Image Classification Strategies

Extracting low level features from an image.
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Low Level Features

Two low level features, which are used often, include SIFT and HOG
features, combined with some colour descriptors.
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SIFT - Scale Invariant Feature Transform

– Localised feature based on image gradients.
– One of the first of its kind.
– Some proprietary aspects to its use.
– covered in a later lecture.
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HOG - histograms of oriented gradients.

– Also a gradient based feature.
– next up!
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Histograms of Oriented Gradients

– Image is divided into regions - a window.
– Each window is further divided into cells.
– Each cell is typically 6 to 8 pixels wide.
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Histograms of Oriented Gradients

A local 1D histogram of gradient directions.

– 1D dimension is the angle of the gradient
– the angle is quantised into a discrete set of bins
– for example, for a bin size 20 degrees, we have 18 bins
– sum of all elements is equal to number of pixels in the cell
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Angle

– A gradient is calculated using a centred [−1, 0, 1] filter.
– The filter is applied vertically and horizontally.
– We derive the gradient direction from these first derivatives.

α = tan−1 δg
δy /

δg
δx
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Magnitude

For colour images, we can calculate gradient for the three channels
and select the one with the largest magnitude.

|G | =

√(
δg
δx

)2
+

(
δg
δy

)2
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Binning

For each pixel within a cell, its gradient orientation is used to
increment the relevant histogram bin.

– in proportion to the gradient magnitude
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Interpolation

To enforce invariance to some small gradient orientation differences,
we interpolate histogram contributions between the neighbouring
bin centres.

– Typical binning - 20 degrees.
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Contrast Normalisation

We choose a certain configuration of cells and call it a block

– typically 2-3 cell wide
– perform normalisation within each block
– various schemes proposed in original paper
– e.g. modified L2 norm v → v/

√
||v ||22 + ϵ2
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Figure 4: HOG example

Dalal and Triggs. “Histograms of Oriented Gradients for Human
Detection”, CVPR, 2005
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Visual Words

Once the features are extracted, we would often use dictionaries of
visual words.
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Visual Words

Features representing scenes should be able to summarise these
scenes.
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Visual Words

Imagine we would like to classify images containing sets of objects.
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Visual Words

The precise location of objects may not be relevant.

– The objects may move or deform within the image.
– The viewpoint may change or the image may be deformed or

scaled.
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Visual Words

This suggests some kind of high level histogram representation of
the scene.

– How many cups or plates visible in a kitchen scene?
– Will these objects be present in an outdoor scene?
– How many trees might you expect in a kitchen?
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Visual Words

Detect interest points in the image.

– e.g. corners, T-junctions etc.
– build neighbourhoods around them.
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Visual Words

Describe these neighbourhoods with low level features.

For example, SIFT
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Visual Words

Vector-quantise these features.

– e.g. by k-means clustering.
– These clusters are very much like words.
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Visual Words

For each image, build a histogram of these visual words.

– Two similar images should have similar histograms.
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Visual Words

Compare histograms using histogram intersection.

HI =
n∑

i=1
min(hi , gi)

– Sivic and Zisserman, “Efficient Visual Search. . . ”, Proc. IEEE
2008.
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Spatial Pyramid Kernels

Extending Visual Words. . .
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Spatial Pyramid Kernels

The concept of visual words can be taken further so that it
incorporates a rough layout of the scene.
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Spatial Pyramid Kernels

– split an image into 4 quarters
– calculate HI for each quarter and the whole image
– resulting in 5 different figures.
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Spatial Pyramid Kernels

The quarters can be subdivided further into smaller blocks

– too small blocks are less useful.
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Spatial Pyramid Kernels

The final similarity figure is a sum of block-wise HIs weighted by the
inverse of the block width.

– Lazebnik et al. “Beyond bags of features. . . ”, CVPR 2006
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Dimensionality Reduction

The features we create tend to be high dimensional.
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PCA

Principal Component Analysis (PCA)

– There can be a lot of redundancy in this data.
– We could use PCA to compress this data.
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Fisher LDA

The extension of PCA is Fisher LDA

– Linear Discriminant Analysis (LDA)
– also referred to as Dimension Reduction with Canonical

Variates
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Fisher LDA

Is a projection onto a subspace that maximises the ratio of the
between-class variance to the within-class variance.
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Figure 5: data

We have some data points
belonging to two classes.
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Figure 6: PCA

Difficult to distinguish the
classes along the principal
component.
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Figure 7: LDA

Easier to distinguish the classes
along the discriminant mode.
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Classifier Evaluation

How do we evaluate the performance of the classifier?
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Classifier Evaluation

Image Classification is often evaluated using two metrics:

– precision and recall.
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Classifier Evaluation

Precision : the percentage of recovered items that are relevant.

TP/(TP + FP)
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Classifier Evaluation

Recall : the percentage of relevant items that are recovered.

TP/(TP + FN)
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Classifier Evaluation

We also calculate average precision:

A = 1
Nr

N∑
r=1

P(r)rel(r)

Average precision is the area under the Precision-Recall curve.
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Classifier Evaluation

We also calculate average
precision:

A = 1
Nr

N∑
r=1

P(r)rel(r)

– Nr is the number of
relevant items

– N is the total number of
items

– P(r) is the precision of first
r items in the ranked list.

– rel(r) a binary function
that is 1 when the r th

document is relevant.
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Figure 8: precision-recall for two models
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Classifier Evaluation

ROC curves should be used when there are roughly equal numbers
of observations for each class.

Precision-Recall curves should be used when there is a moderate
to large class imbalance.
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Summary

– HOG features
– Visual Words
– Spatial Pyramid
– PCA and LDA
– Evaluation

Reading:

– Forsyth, Ponce; Computer Vision: A modern approach, 2nd ed.,
Chapters 16,17 and 5.

– Sonka et al., Image Processing, Analysis and Machine Vision,
4th ed., Chapter 10
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