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Content

– Chain codes
– Elliptical Fourier Descriptors
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Shapes

Shapes compactly describe objects in images.
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Representing Shapes

A shape in an image could be represented using the coordinates of
edge pixels.
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Representing Shapes

Pixel coordinates encode the shape and the location

– describes the shape in the image coordinate frame
– same shape in two locations appears to be different
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Representing Shapes

We are not interested in where the shape is - just the representation
of the shape itself.
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Chain Codes

Rather than represent edge pixels in terms of image coordinates,
represent each pixel as a direction.
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Chain Codes

In which direction must we move to stay on the edge?

– Shape is a sequence of directions.
– This is a chain code.
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Connectivity

– Connectivity is the notion of pixels being connected.
– A path must pass through connected pixels.
– In which directions can we travel to stay on the path?
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Figure 1: 4 and 8 connectivity
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Figure 2: We will use 8 connectivity
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Chain Code Example

Figure 3: Encode this image
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Figure 4: Encoding assumptions

Assume:
– 8 connectivity
– scan anti-clockwise
– start at left-most column,

then top-most row
– edge pixels are black
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Figure 5: The edge boundary
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Figure 6: Resulting code: 6 6 7 0 1 1 2 3 5 3 5
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Chain Codes

66701123535
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Chain Codes

For invariance to starting location:

– compute the chain code and rotate so the code represents the
smallest m-digit shape-number.

– 66701123535 → 01123535667
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Chain Codes

Chain codes are translation invariant.

– Adding a constant value to the x, y coordinates does not
change the shape.

Chain codes are not scale or rotation invariant.
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Chain Code Derivatives

Chain codes specify a direction in absolute terms.

– Eg. 0 represents East, regardless of current direction.
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Chain Code Derivatives

This idea can be extended to use a relative encoding.

– Represent the next direction as the number of turns required to
stay on the shape boundary.

– In this case, 0 corresponds to straightforward.

– This is a chain code derivative or differential chain code.
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Chain Code Derivatives

To compute the chain code derivative:

– Compute the difference between chain code elements.
– Take the result modulo n (the connectivity).
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Chain Code Derivatives

Need to be careful with the starting element.

– Common assumption is begin straightforward.
– Chain code wraps around, so starting code is relative to the

last.
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Chain Code Derivatives

– Chain Code: 66701123535
– Derivative: 10111011262

NB: pay attention to modulus of negative numbers.
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Chain Code Derivatives

Chain code derivative provides rotational invariance for rotations of
90 degrees.
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Chain Code Advantages

– compact representation - only boundary is stored
– invariant to translation
– easy to compute shape related features, e.g. area, perimeter,

centroid
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Chain Code Disadvantages

– No true rotational invariance and no scale invariance.
– Extremely sensitive to noise, sub-sampling loses definition.
– Cannot have sub-pixel accurate descriptions, only 4 or

8-connectivity.
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Chain Code Disadvantages

Chain codes describe a specific instance of a shape.

– What about a class of non-rigid shapes?
– What about boundaries that are not closed?
– What about locating shapes automatically in images?
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Elliptical Fourier Descriptors

A parametric representation of a shape.
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Aside: Fourier Series

A Fourier series is an expansion of a periodic function f (x) in terms
of an infinite sum of sines and cosines.
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Aside: Fourier Series

We can approximate non-periodic functions on a specific interval.

– by pretending the non-periodic part is periodic outside the
interval.
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Aside: Fourier Series

The Fourier series of a periodic function f (t) of period T is:

f (t) = a0
2 +

∞∑
n=1

[
an cos 2πnt

T + bn sin 2πnt
T

]

for some set of Fourier coefficients an and bn defined by the
integrals:

an = 2
T

∫ T

0
f (t) cos 2πnt

T dt, bn = 2
T

∫ T

0
f (t) sin 2πnt

T dt.
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Figure 7: approximate square wave - Creative Commons
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Figure 8: approximate saw tooth wave - public domain
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Aside: Fourier Series

A function is even when:

f (x) = f (−x) for all x

It has reflective symmetry about the y-axis, e.g. x2 or cos(x).

We can approximate even functions using only cosine coefficients.
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Aside: Fourier Series

A function is odd when:

−f (x) = f (−x) for all x

It rotational symmetry about the origin, e.g. x3 or sin(x).

We can approximate even functions using only sine coefficients.
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It is useful to know about odd and even functions, but generally we
will need to know both coefficients.
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Elliptical Fourier Series

How do we go from Chain encodings to EFDs?

– First separate chain encodings into x and y projections.
– Allows us to deal with each dimension independently.
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The projection of the first p links is the sum of differences between
all previous links.

xp =
p∑

i−1
∆xi , yp =

p∑
i−1

∆yi
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For the x-projection:

– For East, North East, or South East, ∆x = 1.
– For North and South, ∆x = 0.
– For West, North West, or South West, ∆x = −1.
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Similarly, for the y-projection:

– For North, North East, or North West, ∆y = 1.
– For East and West, ∆y = 0.
– For South, South East, or South West, ∆y = −1.
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We will consider the “time” derivative of the chain.

Time here means the length of the chain.

– The contribution of horizontal and vertical links is one.
– The contribution of a diagonal link is

√
2.

tp =
p∑

i−1
∆ti
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Elliptical Fourier Series

Calculate the Fourier expansion for the x-projection.

x(t) = a0
2 +

∞∑
n=1

[
an cos 2πnt

T + bn sin 2πnt
T

]

NB: not to infinity, but to some useful number of coefficients.
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where:

a0
2 = 1

T

∫ T

0
x(t) dt

and T is the length of the chain.
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again, from the definition:

an = 2
T

∫ T

0
x(t) cos 2πnt

T dt, bn = 2
T

∫ T

0
x(t) sin 2πnt

T dt.

How can we calculate these coefficients?
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The time derivative of x is periodic with period T and can itself be
represented by the Fourier series:

x ′(t) =
∞∑

n=1
αn cos 2πnt

T + βn sin 2πnt
T

where:

αn = 2
T

∫ T

0
x ′(t) cos 2πnt

T dt , βn = 2
T

∫ T

0
x ′(t) sin 2πnt

T dt
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then:

αn = 2
T

∫ T

0
x ′(t) cos 2πnt

T dt

The difference here is our chain code is a piecewise linear function,
so the time derivative is constant.
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αn = 2
T

∫ T

0
x ′(t) cos 2πnt

T dt

= 2
T

K∑
p=1

∆xp
∆tp

∫ tp

tp−1
cos 2πnt

T dt

The “trick” is to notice that the integral over the whole period is a
summation of the K chain links, and the derivative is a constant:
the change in direction over the change in length.
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finally, we take the antiderivative of the cosine term:

αn = 2
T

∫ T

0
x ′(t) cos 2πnt

T dt

= 2
T

K∑
p=1

∆xp
∆tp

∫ tp

tp−1
cos 2πnt

T dt

= 1
nπ

K∑
p=1

∆xp
∆tp

(
sin 2πntp

T − sin 2πntp−1
T

)
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similarly, we can calculate:

βn = 1
nπ

K∑
p=1

∆xp
∆tp

(
cos 2πntp

T − cos 2πntp−1
T

)
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We can also obtain x ′(t) directly from the x(t) definition:

x(t) = a0
2 +

∞∑
n=1

an cos 2πnt
T + bn sin 2πnt

T

x ′(t) =
∞∑

n=1
−2πnt

T an sin 2πnt
T + 2πnt

T bn cos 2πnt
T
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If we compare both derivations of x ′(t):

x ′(t) =
∞∑

n=1
αn cos 2πnt

T + βn sin 2πnt
T

x ′(t) =
∞∑

n=1
−2πnt

T an sin 2πnt
T + 2πnt

T bn cos 2πnt
T

we can equate coefficients from both equations:

−2πnt
T an = βn,

2πnt
T bn = αn
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and solve for an and bn yielding the x projection coefficients:

an = T
2n2π2

K∑
p=1

∆xp
∆tp

(
cos 2πntp

T − cos 2πntp−1
T

)

bn = T
2n2π2

K∑
p=1

∆xp
∆tp

(
sin 2πntp

T − sin 2πntp−1
T

)
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we can also solve for the y projection in the same way:

cn = T
2n2π2

K∑
p=1

∆yp
∆tp

(
cos 2πntp

T − cos 2πntp−1
T

)

dn = T
2n2π2

K∑
p=1

∆yp
∆tp

(
sin 2πntp

T − sin 2πntp−1
T

)
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We now know everything we need to calculate the Fourier series
coefficients for the x and y projections.

– The number of harmonics is n.
– The length of the chain is T .
– The number of chain links is K .
– The length of each link is tp.
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Elliptical Fourier Series

The DC component determines the centre position of the ellipse.

For those interested, the calculation can be found here:

“Kuhl, Giardina; Elliptic Fourier Features of a Closed Contour,
Computer Graphics and Image Processing, 1982”
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Figure 9: Elliptical Cat
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Summary

Chain Codes

– conceptually simple
– affected by noise
– only really translation invariant

Elliptical Fourier Descriptors (EFDs)

– invariant to translation, scale and rotation
– less affected by noise
– very compact with fewer harmonics

57


	Content
	Shapes
	Chain Codes
	Elliptical Fourier Descriptors
	Summary

