
Point Distribution Models
Computer Vision CMP-6035B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

February 5, 2022

1



Content

– Point Distribution Models
– Procrustes Analysis
– Principal Component Analysis

2



Point Distribution Models

A generative statistical model of the variation of the shape of an
object.
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Point Distribution Models

If something specific about the shape is known, it should be
incorporated into the image search.

A point distribution model (PDM) learns the allowed variation in a
class of shapes from examples.
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Landmarks

A shape is represented by a set of landmarks located along the
shape boundary.

– Must be easy to locate from one image to another.
– Use T-junctions, points of high curvature, corners, etc
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Landmarks

To better represent the overall shape, also evenly space intermediate
points along the boundary.
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primary landmarks

secondary landmarks

Figure 1: shape landmarks
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Figure 2: landmark images

All example shapes must have the same number of landmarks and
be labelled with the landmarks in the same order.

– Note: this initial landmarking is a manual process.
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Figure 3: landmark images

Sufficient images must be labelled to capture the expected range of
variation.

– The model cannot extrapolate to unknown shapes.
– The model can interpolate to new instances within the bounds

of the data.
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Mathematically, a shape is the concatenation of the x and y
coordinates of the landmarks.

x = {x11, x12, ..., y11, y12, ...y1n}T

The consistency in the labelling ensures the elements of these
vectors have the same meaning.
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The coordinates describe the
shape in the image coordinate
frame.

– The same shape at different
locations results in a
different shape vector.

11



We need to normalise shapes for
translation, scale and rotation.
This can be done using
generalised Procrustes
analysis.
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Procrustes Analysis

Procrustes, the son of Poseidon, from Greek mythology.
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Procrustes Analysis

Figure 4: captured landmarks Figure 5: aligned landmarks
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Procrustes Analysis

1. Translate each example so it is centred on the mean.
2. Using the first shape as a reference, transform each example to

align with the reference.
3. Compute the mean of the aligned shapes.
4. Align the mean with the first shape.
5. Transform shapes to match the adjusted mean.
6. If not converged, go to step 3.

Convergence is a small change in the mean.
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To align shapes:

x1 = {x11, x12, ..., y11, y12, ...y1n}T

x2 = {x21, x22, ..., y21, y22, ...y2n}T

Scale and rotation is defined by M, and translation by t:

M(s, θ) =
(

x2is cos θ − y2is sin θ
x2is sin θ + y2is cos θ

)
t =

(
tx
ty

)
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Aligning Shapes

The parameters for scaling, rotation and translation are unknown.

– They need to be calculated from the data.
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Aligning Shapes

Define a metric that measures how well two shapes are aligned.

– Use sum of squared differences between the shapes.

E = (x1 − M(s, θ)x2 − t) W (x1 − M(s, θ)x2 − t)T

where W is a diagonal weighting matrix.
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We can alternatively write the equation as:

E =
n∑

i=1
wi

[(
x1i
y1i

)
−
(

x2is cos θ − y2is sin θ
x2is sin θ + y2is cos θ

)
−
(

tx
ty

)]
[(

x1i
y1i

)
−
(

x2is cos θ − y2is sin θ
x2is sin θ + y2is cos θ

)
−
(

tx
ty

)]
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Let ax = s cos θ and ay = s sin θ and substitute:

E =
n∑

i=1
wi

[(
x1i
y1i

)
−
(

x2iax − y2iay
x2iay + y2iax

)
−
(

tx
ty

)]
[(

x1i
y1i

)
−
(

x2iax − y2iay
x2iay + y2iax

)
−
(

tx
ty

)]
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then multiply:

E =
n∑

i=1
wi
[
(x1i − axx2i + ay y2i − tx )2 + (y1i − ay x2i − axy2i − ty )2

]

This is the cost function we must minimise.
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E =
n∑

i=1
wi
[
(x1i − axx2i + ay y2i − tx )2 + (y1i − ay x2i − axy2i − ty )2

]

We have four unknown parameters: ax , ay , tx and ty .

– Differentiate with respect to each parameter.
– Equate to zero.
– Solve the resulting system of equations.
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differentiate with respect to tx :

δE
δtx

=
n∑

i=1
wi(2(x1i − axx2i + ay y2i − tx )(−1))
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equate to zero:

0 =
n∑

i=1
wi(−x1i + axx2i − ay y2i + tx )
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distribute the weighting:

0 =
n∑

i=1
wi(−x1i + axx2i − ay y2i + tx )

0 = −
n∑

i=1
wix1i + ax

n∑
i=1

wix2i − ay

n∑
i=1

wiy2i + tx

n∑
i=1

wi

∴
n∑

i=1
wix1i = ax

n∑
i=1

wix2i − ay

n∑
i=1

wiy2i + tx

n∑
i=1

wi
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let:
n∑

i=1
wix1i = X1

n∑
i=1

wix2i = X2

n∑
i=1

wi = W

n∑
i=1

wiy1i = Y1

n∑
i=1

wiy2i = Y2
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the expression from δE
δtx

simplifies to:

X1 = axX2 − ay Y2 + txW
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If we calculate the remaining derivatives, we can develop further
substitutions:

C1 =
n∑

i=1
wi(x1ix2i + y1iy2i)

C2 =
n∑

i=1
wi(y1ix2i + x1iy2i)

Z =
n∑

i=1
wi(x2

2i + y2
2i)
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Finally, we have a system of linear equations:

X1 = axX2 − ay Y2 + txW
Y1 = axY2 + ay X2 + ty W
C1 = axZ + txX2 + ty Y2

C2 = ay Z − txY2 + ty X2

Solve for: ax , ay , tx and ty .
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Aligning Shapes

This was a simplified version of Procrustes analysis.

– We did not constrain M to be a rotation matrix.

Matlab has a procrustes function.

– We will compare the two methods in the lab.
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Point Distribution Models

Given the aligned shapes, compute a model that describes the
variation in the shape.
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Point Distribution Models

A compact linear model of the variation in the shape can be found
using Principal Component Analysis (PCA). The model is of the
form:

x = x + Pbs

where:

– x is a shape
– x is a reference shape, often the mean shape
– the matrix P describes the variation in shape
– bs are the parameters that represent a specific shape instance.
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PCA

Principal Component Analysis
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PCA

– Reveals the internal structure of the data in a way that best
explains the variance in the data.

– Used for dimensionality reduction.
– Reduces data down into its basic components, stripping away

any unnecessary parts.
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PCA

– Assume we have 2-dimensional measurements. e.g. the height
and foot size for a number of people

– We expect the measurements to be correlated to some degree.
e.g. taller people tend to have larger feet

– Visualise the data by plotting one measure against the other.

35



36



PCA

The objective of PCA is to capture as much of the variation in as
few dimensions as possible.

Find line of “best fit” through the data, then line of “next best fit”
which is orthogonal to the first. . .

Repeat for however many dimensions your data has
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PCA

Since the dimensions must be orthogonal, all we have done is rotate
the axes to better align with the data.

In doing this:

– P1 captures most of the meaningful variation
– P2 seems to capture the noise in the measurements

The original data can be approximated as some distance along P1
from the centre of the data cloud.
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PCA

To project a data point onto a new axis:

bs = PT (x − x)
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PCA

To reconstruct the data point from the features:

x ≈ x + Pbs

This is only an approximation since the data are truncated to lie on
just the principal component(s).
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PCA

Note, in this example we have moved from a 2D problem to 1D so
the representation is more compact.

Staying within the limits of the data means new examples can be
generated — this is a generative model.
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PCA

Algorithm:

Compute the mean of the data and subtract.

x = 1
N

N∑
i=1

xi

Compute the covariance matrix.

S = 1
N − 1

N∑
i=1

(xi − x)(xi − x)T

Compute the Eigenvectors and Eigenvalues of the covariance
matrix and sort into descending order by Eigenvalue.
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PCA

– Eigenvectors are the principal components.
– Eigenvalues are the variance explained by each principal

component.
– We typically retain the number of eigenvectors that describe

95% of the total variation in the data.
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PCA

Matlab has implementations of both PCA and Eigenvector
decomposition.
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Point Distribution Models

For modelling shapes, an n-point shape is represented as a 2n
element vector:

X = {x1, x2, . . . , xn, y1, y2, . . . , yn}T

PCA can be applied to the R2n data, rotating the 2n axes to best fit
to the data cloud in R2n space.

We retain only the meaningful variation - often resulting in
considerable compression.
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Point Distribution Models

Ensuring that the shape parameters are within the limits of the
original data cloud means that any generated shape is valid.

|bi | ≤ 3
√

λi
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Summary

– Described a generative parametric shape model (PDM) that
learns the variation in a class of shape.

– Aligned shapes using Procrustes analysis.

– Used PCA to reduce the dimensionality of the data.
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