
Introduction to Line Drawing
Graphics 1 CMP-5010B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

Spring 2022

1

Contents

– Theory and Concepts
– Scan Conversion
– Digital Differential Analyser (DDA)

2

Lines

A line is an infinitely thin, infinitely long collection of points
extending in two opposite directions.

3

Lines

A line segment has two endpoints and all the points of the line
between them.

4

Lines

A ray is part of a line with one endpoint and extends infinitely in
one direction.

5

Representing Lines

We will consider two line representations:

– Parametric, or vector form.
– Cartesian form.

6

Parametric Line Equation

A line can be defined as the set of all points in space that satisfy
two criteria:

1. Contains a point, which we identify by a position vector r0.
2. The vector between r0 and any position vector r on the line, is

parallel to a given vector v.

7

Parametric Line Equation

The vector with initial point r0 and terminal point r is given by:

s = r − r0

This vector must be parallel to v hence, for some scalar λ:

s = λv

8

Parametric Line Equation

Any position vector r, corresponding to a point P on the line has
the form:

r = r0 + λv

where λ is a scalar called a parameter, and this is the vector
equation.

9

Parametric Line Equation

v
r

r0

Figure 1: Parametric Line

r = r0 + λv

10

Cartesian Line Equation

Algebraically, we can define a line with an implicit linear equation:

ax + by + c = 0

11

Cartesian Line Equation

We can derive the implicit form of the line equation from the vector
equation.

– Consider coordinates of points on the line as vectors projected
to the x-axis and y-axis.

– Apply the vector equation to the x-axis and y-axis projection to
obtain the implicit form.

12

Cartesian Line Equation

y

x

r

r0

x0

y0

y1

x1

y

x

Figure 2: Parametric Line

Projecting to the x-axis and
y-axis.

x = x0 + λ(x1 − x0)
y = y0 + λ(y1 − y0)

13

Cartesian Line Equation

We can remove the scalar λ using simultaneous equations:

x = x0 + λ(x1 − x0) × (y1 − y0)
−y = y0 + λ(y1 − y0) × (x1 − x0)

14

Cartesian Line Equation

Giving:

x(y1 − y0) − y(x1 − x0) = x0(y1 − y0) − y0(x1 − x0)
ax + by = −c

with:

a = y1 − y0

b = x0 − x1

c = −by0 − ax0

15

Cartesian Line Equation

The vectors x and y can be replaced with scalar values x and y ,
yielding:

ax + by + c = 0 □

16

Cartesian Line Equation

The implicit equation has the form:

f (x , y) = C

where C is a constant.

17

Cartesian Line Equation

There is also an explicit algebraic equation of the form:

y = f (x)

18

Cartesian Line Equation

From:

ax + by + c = 0

⇒ y = − a
b x − c

b
⇒ y =mx + d

where:

m = −a
b , d = −c

b

19

Cartesian Line Equation

Although the explicit equation y = mx + c may be familiar, for
computer graphics it is inconvenient, since for vertical lines m = ∞.

20

Scan Conversion

Lines in mathematics are continuous and have infinite resolution.

A computer screen has finite resolution using discrete picture
elements, or pixels.

21

Scan Conversion

For rendering, we will discretise the line equation using finite deltas.

y = mx + c ⇒ δy = δmx + c

22

Scan Conversion

– We always render line segments.
– Line segments have a defined start and end point.
– Hence, we can derive the slope and intercept of our line.

m = yend − y0
xend − x0

c = y0 − mx0

23

Scan Conversion

NB: We will ignore the intercept c for the following derivations.

– it should be added to the right-hand side of the equation for
lines with c ̸= 0

24

Digital Differential Analyser (DDA)

The digital differential analyser (DDA) is a scan-conversion line
algorithm based on calculating either δy or δx

25

Digital Differential Analyser (DDA)

Calculating δx . Since the distance between points is measured in
pixels; if we move pixel by pixel along the positive x axis, we have:

δx = xi+1 − xi = 1

26

Digital Differential Analyser (DDA)

Calculating δy .

δy = mδx
yi+1 − yi = m(xi+1 − xi)

Where i is a grid position of a discreet point on the line, and i + 1 is
an immediate neighbour on the grid.

27

Digital Differential Analyser (DDA)

Given δx = xi+1 − xi = 1:

yi+1 = yi + m

Specifically for:

0 ≤ |m| ≤ 1

28

Digital Differential Analyser (DDA)

y

x

Figure 3: render octants

So far, our algorithm will draw
lines when:

0 ≤ |m| ≤ 1 and x ≥ 0

29

Digital Differential Analyser (DDA)

#include <stdlib.h>
#include <math.h>

inline int round (const float a) {
return int (a + 0.5);
}

// Assume a function setPixel exists.
...

30

Digital Differential Analyser (DDA)

void naiveDDA (int x0, int y0, int xEnd, int yEnd){
int x = x0;
float y = float (y0);
float m = float (yEnd - y0) / float (xEnd - x0);

for (x = x0; x <= xEnd; x++) {
setPixel (x, round (y));
y += m;

} }

31

Digital Differential Analyser (DDA)

How do we draw in the other octants?

32

Digital Differential Analyser (DDA)

For lines with an absolute positive slope greater than 1.0, we reverse
the roles of x and y .

That is, we sample at unit y intervals, δy = 1, and calculate
consecutive x values as:

xi+1 = xi + 1
m

33

Digital Differential Analyser (DDA)

To cover the remaining octants, we decrement x and y .

Hence, for top, right, left and bottom octants, we have:

|m| > 1 , δy = 1, xi+1 = xi + 1
m

0 ≤ |m| ≤ 1 , δx = 1, yi+1 = yi + m
0 ≤ |m| ≤ 1 , δx = −1, yi+1 = yi + m

|m| > 1 , δy = −1, xi+1 = xi + 1
m

34

Figure 4: all octants

35

void lineDDA (int x0, int y0, int xEnd, int yEnd){
int dx=xEnd-x0, dy=yEnd-y0, steps, k;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);

else
steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));
for (k = 0; k < steps; k++) {

x += xIncrement;
y += yIncrement;
setPixel (round (x), round (y));

} }

36

Digital Differential Analyser (DDA)

DDA has a few problems:

– fails to take advantage of the integral nature of pixels
– floating point variables to store the slope.
– costly division operations to calculate the slope.

37

Digital Differential Analyser (DDA)

The algorithm has a few problems:

– fails to take advantage of the integral nature of pixels
– floating point variables to store the slope.
– costly division operations to calculate the slope.

We will address these short comings in the next lecture.

38

Summary

– Theory and Concepts
– Scan Conversion
– Digital Differential Analyser (DDA)

Reading:

– Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 5

39

	Contents
	Lines
	Scan Conversion
	Digital Differential Analyser (DDA)
	Summary

