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Lines

A line is an infinitely thin, infinitely long collection of points
extending in two opposite directions.
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Lines

A line segment has two endpoints and all the points of the line
between them.
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Lines

A ray is part of a line with one endpoint and extends infinitely in
one direction.
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Representing Lines

We will consider two line representations:

– Parametric, or vector form.
– Cartesian form.
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Parametric Line Equation

A line can be defined as the set of all points in space that satisfy
two criteria:

1. Contains a point, which we identify by a position vector r0.
2. The vector between r0 and any position vector r on the line, is

parallel to a given vector v.
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Parametric Line Equation

The vector with initial point r0 and terminal point r is given by:

s = r − r0

This vector must be parallel to v hence, for some scalar λ:

s = λv
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Parametric Line Equation

Any position vector r, corresponding to a point P on the line has
the form:

r = r0 + λv

where λ is a scalar called a parameter, and this is the vector
equation.
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Parametric Line Equation
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Figure 1: Parametric Line

r = r0 + λv
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Cartesian Line Equation

Algebraically, we can define a line with an implicit linear equation:

ax + by + c = 0
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Cartesian Line Equation

We can derive the implicit form of the line equation from the vector
equation.

– Consider coordinates of points on the line as vectors projected
to the x-axis and y-axis.

– Apply the vector equation to the x-axis and y-axis projection to
obtain the implicit form.
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Cartesian Line Equation
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Figure 2: Parametric Line

Projecting to the x-axis and
y-axis.

x = x0 + λ(x1 − x0)
y = y0 + λ(y1 − y0)
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Cartesian Line Equation

We can remove the scalar λ using simultaneous equations:

x = x0 + λ(x1 − x0) × (y1 − y0)
−y = y0 + λ(y1 − y0) × (x1 − x0)
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Cartesian Line Equation

Giving:

x(y1 − y0) − y(x1 − x0) = x0(y1 − y0) − y0(x1 − x0)
ax + by = −c

with:

a = y1 − y0

b = x0 − x1

c = −by0 − ax0
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Cartesian Line Equation

The vectors x and y can be replaced with scalar values x and y ,
yielding:

ax + by + c = 0 □

16



Cartesian Line Equation

The implicit equation has the form:

f (x , y) = C

where C is a constant.
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Cartesian Line Equation

There is also an explicit algebraic equation of the form:

y = f (x)
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Cartesian Line Equation

From:

ax + by + c = 0

⇒ y = − a
b x − c

b
⇒ y =mx + d

where:

m = −a
b , d = −c

b
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Cartesian Line Equation

Although the explicit equation y = mx + c may be familiar, for
computer graphics it is inconvenient, since for vertical lines m = ∞.
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Scan Conversion

Lines in mathematics are continuous and have infinite resolution.

A computer screen has finite resolution using discrete picture
elements, or pixels.
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Scan Conversion

For rendering, we will discretise the line equation using finite deltas.

y = mx + c ⇒ δy = δmx + c
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Scan Conversion

– We always render line segments.
– Line segments have a defined start and end point.
– Hence, we can derive the slope and intercept of our line.

m = yend − y0
xend − x0

c = y0 − mx0

23



Scan Conversion

NB: We will ignore the intercept c for the following derivations.

– it should be added to the right-hand side of the equation for
lines with c ̸= 0

24



Digital Differential Analyser (DDA)

The digital differential analyser (DDA) is a scan-conversion line
algorithm based on calculating either δy or δx
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Digital Differential Analyser (DDA)

Calculating δx . Since the distance between points is measured in
pixels; if we move pixel by pixel along the positive x axis, we have:

δx = xi+1 − xi = 1
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Digital Differential Analyser (DDA)

Calculating δy .

δy = mδx
yi+1 − yi = m(xi+1 − xi)

Where i is a grid position of a discreet point on the line, and i + 1 is
an immediate neighbour on the grid.
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Digital Differential Analyser (DDA)

Given δx = xi+1 − xi = 1:

yi+1 = yi + m

Specifically for:

0 ≤ |m| ≤ 1
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Digital Differential Analyser (DDA)
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Figure 3: render octants

So far, our algorithm will draw
lines when:

0 ≤ |m| ≤ 1 and x ≥ 0
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Digital Differential Analyser (DDA)

#include <stdlib.h>
#include <math.h>

inline int round (const float a) {
return int (a + 0.5);
}

// Assume a function setPixel exists.
...
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Digital Differential Analyser (DDA)

void naiveDDA (int x0, int y0, int xEnd, int yEnd){
int x = x0;
float y = float (y0);
float m = float (yEnd - y0) / float (xEnd - x0);

for (x = x0; x <= xEnd; x++) {
setPixel (x, round (y));
y += m;

} }
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Digital Differential Analyser (DDA)

How do we draw in the other octants?
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Digital Differential Analyser (DDA)

For lines with an absolute positive slope greater than 1.0, we reverse
the roles of x and y .

That is, we sample at unit y intervals, δy = 1, and calculate
consecutive x values as:

xi+1 = xi + 1
m
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Digital Differential Analyser (DDA)

To cover the remaining octants, we decrement x and y .

Hence, for top, right, left and bottom octants, we have:

|m| > 1 , δy = 1, xi+1 = xi + 1
m

0 ≤ |m| ≤ 1 , δx = 1, yi+1 = yi + m
0 ≤ |m| ≤ 1 , δx = −1, yi+1 = yi + m

|m| > 1 , δy = −1, xi+1 = xi + 1
m

34



Figure 4: all octants
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void lineDDA (int x0, int y0, int xEnd, int yEnd){
int dx=xEnd-x0, dy=yEnd-y0, steps, k;
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);

else
steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps);

setPixel (round (x), round (y));
for (k = 0; k < steps; k++) {

x += xIncrement;
y += yIncrement;
setPixel (round (x), round (y));

} }
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Digital Differential Analyser (DDA)

DDA has a few problems:

– fails to take advantage of the integral nature of pixels
– floating point variables to store the slope.
– costly division operations to calculate the slope.
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Digital Differential Analyser (DDA)

The algorithm has a few problems:

– fails to take advantage of the integral nature of pixels
– floating point variables to store the slope.
– costly division operations to calculate the slope.

We will address these short comings in the next lecture.
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Summary

– Theory and Concepts
– Scan Conversion
– Digital Differential Analyser (DDA)

Reading:

– Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 5
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