
Efficient Line Drawing
Graphics 1 CMP-5010B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

Spring 2022

1



Contents

– Bresenham’s Line Algorithm
– Midpoint Line Algorithm
– Antialiasing

2



Bresenham’s Line Algorithm

Improving the efficiency of the DDA line drawing algorithm.

– remove floating point operations
– minimise the number of operations

3



Let’s make clear some assumptions:

– pixel coordinates are integers
– left to right for x
– bottom to top for y .
– x0 < x1 and y0 < y1
– the slope of the line is between 0 and 1, i.e. 0 ≤ m ≤ 1

4



Following these assumptions, the simplest algorithm is:

for x = x0 to x1:
decide y value
draw(x, y)

What is an efficient way to decide the y value?

5



Figure 1: pixel line

6



As we step in the x direction, we observe that:

– y stays the same
– or y increases by 1.

7



We can include this observation in our algorithm:

x = x0
y = y0
draw(x, y)
while x < x1:

x = x + 1
if y should increment:

y = y + 1
draw(x, y)

8



Assuming the line is given by y = mx + c:

– we are setting y = round(mx) + c
– each unit step of x will increment y by m

9



Let fraction be the amount y has increased since the last y
increase.

– We want to increment y when fraction is ≥ 1
2 .

10



x = x0
y = y0
fraction = start_value
fraction_step = (y1 - y0) / (x1 - x0)
draw(x, y)
while x < x1:

x = x + 1
fraction = fraction + fraction_step
if fraction >= 1/2:

y = y + 1
fraction = fraction - 1

draw(x, y)

11



First we have: m = y1−y0
x1−x0

– To remove the fraction, we multiply by (x1 − x0).
– To remove the comparison to 1/2 we multiply by 2.

hence:

fraction_step = y1 − y0
x1 − x0 × (x1 − x0) × 2

= 2(y1 − y0)

12



We also want to set a start_value for fraction:

start_value = 2(y1 − y0) − (x1 − x0)

13



x = x0
y = y0
fraction = 2 * (y1 - y0) - (x1 - x0)
fraction_step = 2 * (y1 - y0)
draw(x, y)
while x < x1:

x = x + 1
fraction = fraction + fraction_step
if fraction >= 0:

y = y + 1
fraction = fraction - 2 * (x1 - x0)

draw(x, y)

14



Bresenham’s Line Algorithm

There are other approaches to deriving the Bresenham Line
Algorithm. The parts are the same, but some details are presented
differently.

The course text makes the decision to move up in y based on the
distance between the true line and the nearest pixel.

– Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 5

15



Midpoint Line Algorithm

Midpoint is a variation of Bresenham’s Line Algorithm.

Same improvement goals:

– remove floating point operations
– minimise the number of operations

16



Midpoint Line Algorithm

The midpoint algorithm uses 8 compass points to describe the next
pixel to draw:

– E, NE, N, NW, W, SW, S, SE

17



Midpoint Line Algorithm

We will describe the algorithm just for the upper right octant.

– The only possible next directions are E and NE.

18



Midpoint Line Algorithm

NE

Ep

mid

Figure 2: midpoint pixel directions

For a previous pixel p in the
upper right octant, we label the
two candidate pixels E and NE.
We will define criteria based on
the midpoint between the two
candidates.

19



Midpoint Line Algorithm

The algorithm decides if a true line passes either above, below or
through the midpoint.

20



Midpoint Line Algorithm

NE

Ep

mid

NE

Ep

mid

NE

Ep

mid

Figure 3: Three possible cases

21



Midpoint Line Algorithm

IF the true line is below or on the midpoint: pick
the E pixel.

ELSE: pick the NE pixel.

22



Midpoint Line Algorithm

We will use the implicit line equation:

ax + by + c = 0

We know that:

a = ∆y , b = −∆x ⇒ f (x , y) = x∆y − y∆x + c = 0

N.B. henceforth we will assume c = 0, and remove from the
derivations.

23



Decision Variable

IF the line goes exactly through the midpoint then we have the
decision variable:

D = f (xp + 1, yp + 1
2)

= a(m)(xp + 1) + b(m)(yp + 1
2)

= 0

recall, in the upper right octant: a > 0, b < 0

24



Decision Variable

IF the line goes below the midpoint:

a < a(m) ∧ b > b(m) ⇒ D < 0 ⇒ E

The actual value of D(E ) is:

D(E ) = f (xp + 1, yp)
= a(xp + 1) + byp

= axp + a + byp

= f (xp, yp) + a

25



Decision Variable

ELSE the line goes above the midpoint:

a > a(m) ∧ b < b(m) ⇒ D > 0 ⇒ NE

The actual value of D(NE ) is:

D(NE ) = f (xp + 1, yp + 1)
= a(xp + 1) + b(yp + 1)
= axp + a + byp + b
= f (xp, yp) + a + b

26



Decision Variable

To avoid having to recalculate actual decision variable values each
time we move one pixel in x, we can derive a decision variable
increment instead.

We do this by looking ahead to the next pixel.

27



Decision Variable Increment

NE

Ep

mid mid2

Figure 4: chosen E pixel

If we have chosen the E pixel
then the next midpoint will be
at:

DmE = f (xp + 2, yp + 1
2)

= a(xp + 2) + b(yp + 1
2)

Subtracting the original D gives:

∆E = DmE − D
= a
= ∆y

28



Decision Variable Increment

NE

Ep

mid

mid2

Figure 5: chosen NE pixel

If we have chosen the NE pixel
then the next midpoint will be
at:

DmNE = f (xp + 2, yp + 3
2)

= a(xp + 2) + b(yp + 3
2)

Subtracting the original D gives:

∆NE = DmNE − D
= a + b
= ∆y − ∆x

29



Initial Decision Variable

If the decision variable relies on the previous pixel, what is the
decision variable for the first pixel?

30



Initial Decision Variable

Since the start point is on the line:

f (x0, y0) = 0

Substituting into the decision variable gives:

Dinit = f (x0 + 1, y0 + 1
2)

= a(x0 + 1) + b(y0 + 1
2)

= ax0 + by0 + a + 1
2b

= f (x0, y0) + a + 1
2b

31



Initial Decision Variable

This yields:

Dinit = a + b
2

We want to remove floating point arithmetic, so we can multiply by
2, however, we must also do this to the decision variable increments.

32



Initial Decision Variable

Finally, our initial decision variable is:

Dinit = 2a + b = 2∆y − ∆x

and the decision variable increments are:

∆E = 2∆y , ∆NE = 2(∆y − ∆x)

33



void lineMid(int x0, int y0, int xEnd, int yEnd){
int dx=xEnd-x0, dy=yEnd-y0, x=x0, y=y0;
int E_inc = 2*dy, NE_inc = 2*(dy-dx), D = 2*dy-dx;

setPixel(x,y);
while(x<xEnd){

if (D > 0){
D += NE_inc;
x++; y++;

} else {
D += E_inc;
x++;

}
setPixel(x,y);

} }

34



Aliasing

Aliasing is a distortion artifact when representing a high-resolution
image at a lower resolution.

– stair steps
– jagged edges

35



Anti-Aliasing

To mitigate aliasing, we can use a technique called anti-aliasing.

We will consider a few possible approaches.

36



Anti-Aliasing

The first approach is to consider a higher resolution display.

– This has happened naturally, as hardware has improved.
– We can consider this a “brute force” approach.

37



Anti-Aliasing
We can render an artificially thick line.

– Reduce colour intensity as we move away from the true line.

Figure 6: anti-aliased line
38



Anti-Aliasing

We can render to a sub-pixel grid.

– then use sampling to get the colour at the pixel.

39



Anti-Aliasing

We can filter the image.

– usually some low-pass filter
– e.g. box or gaussian filter
– filtering is performed using convolution with a kernel
– often combined with sub-pixel sampling.

40



Summary

– Bresenham’s Line Algorithm
– Midpoint Line Algorithm
– Antialiasing

Reading:

– Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 5

– Bresenham, J. E. (1965) “Algorithm for computer control of a
digital plotter”

41


	Contents
	Bresenham’s Line Algorithm
	Midpoint Line Algorithm
	Aliasing
	Summary

