
Polygon Filling
Graphics 1 CMP-5010B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

Spring 2022

1



Content

– Polygon Filling
– Scan Line Algorithm
– Boundary Fill Algorithm

2



Polygon Filling

Identify pixels that belong to the interior of a polygon. Once
identified, we can:

– pass the pixel to the rasteriser
– assign colour to the pixel
– assign a depth value to the pixel
– sample a texture for the pixel

3



Polygon Filling

– A polygon is a set of vertices that are connected by edges.
– We need efficient algorithms to fill polygons.
– We can extend ideas from line drawing to polygon filling.
– Not all polygons are handled equally!

4



Convex Polygons

Figure 1: convex polygon

– interior angles ≤ 180◦

– scan lines enter the interior
once and exit once

– triangles are always convex

5



Concave Polygons

Figure 2: concave polygon

– arbitrarily complex polygons
– scan lines enter and exit

many times
– more difficult to fill

6



Scan-Line Algorithm

The scan-line algorithm must work for both convex and concave
polygons.

7



Scan-Line Algorithm

for line in y=0 to y=height:
counter = 0
for pixel in x=0 to x=width:

if edge:
counter +=1

if counter is odd:
draw(line, pixel)

8



y

x

Figure 3: concave polygon

9



y

xa b c d

Figure 4: concave scan

10



Scan-Line Algorithm

The algorithm seems to work well.

– Have we considered all cases?

11



y

x

a

b

Figure 5: complex polygon

12



y

x

a

b

Ya

Figure 6: scanning problem

13



y

x

a

b

Ya

Figure 7: naive algorithm wrongly fills the
cavity

– Enter the left edge,
increment the counter
and draw.

– Pass through vertex a,
increment the counter
and stop drawing.

– Leave the right edge,
increment the counter
and draw.

14



y

x

a

b

Ya

Figure 8: Counting vertex a twice provides a
solution.

Solution:
– count the vertex twice

15



y

x

a

b

Ya

Yb

Figure 9: Counting vertices twice does not
always work.

Problem:
– Counting the vertex

twice does not always
work!

16



y

x

a

b

Figure 10: Difference between vertex a and
b.

– consider the edges at
each vertex

– edges through vertex
b are monotonic in y

17



y

x

a

b

Figure 11: Difference between vertex a and
b.

If we move around the
polygon in a clockwise
direction:

– edges that enter and
leave vertex a go in
opposite y directions.

– edges that enter and
leave vertex b go in
the same y direction.

– edges through vertex
b are monotonic in y

18



We can split the vertex for monotonic edges:

y+1

y

y-1

Figure 12: split vertex

19



The lower edge is shortened to create two new edge points.

y+1

y

y-1

Figure 13: split vertex

20



Scan-Line Algorithm

process vertices of monotonic edges

for line in y=0 to y=height:
counter = 0
for pixel in x=0 to x=width:

if edge or edge-point:
counter +=1

if vertex:
counter +=2

if counter is odd:
draw(line, pixel)

21



Scan-Line Implementation

Expanding the pseudocode.

22



Scan-Line Implementation

The first step is to build an array of linked lists, called a Bucket
Sorted Edge Table (BSET).

23



Scan-Line Implementation

Each node in the linked list has 3 members related to a vertex, and
a pointer to the next node:

– y value of the other vertex on the edge
– x value of this vertex
– inverse slope of the edge
– pointer to the next node

24



Scan-Line Implementation

To determine edge intersections it uses the familiar slope of a line:

m = yk+1 − yk
xk+1 − xk

= 1
xk+1 − xk

⇒ xk+1 = xk + 1
m

25



Scan-Line Implementation

Before we start to build the Bucket Sorted Edge Table (BSET), we
split any vertices on monotonic edges.

– The BSET is built from the vertex with the lowest y value to
the vertex with the highest y value.

– If the vertex is part of two edges, the first node is for the left
edge, and the second node is for the right edge.

– Split vertices have only one edge, so only one node is entered.

26



BSET Example

a

b

c

c'

d

e

Ya

Yd

Yc

Figure 14: polygon scan

Yc

Yd

Ya

NULL

NULL

NULLYb Xc 1/Mcb

Yc' Xd 1/Mdc Ye Xd 1/Mde NULL

Ye Xa 1/Mae Yb Xa 1/Mab NULL

1

0

Figure 15: BSET

27



Scan-Line Run Time

The BSET is an initialisation step.

– It is created once.

At runtime, we use another data structure:

– Active Linked List (ALL).

28



Active Linked List

– Initially, the ALL points to NULL.
– Search the BSET for the first non NULL entry.
– Set the ALL to the first non NULL entry.

29



Active Linked List

For our example, the ALL is first set to ya.

Ye Xa 1/Mae Yb Xa 1/Mab NULL

Figure 16: Active List

The draw function will now draw from xa to xa, that is, just a single
point.

30



Active Linked List

Next, the scan line moves up to Ya + 1.

– There is no entry in the BSET for this y value.
– Therefore the current ALL has the x values updated:

x ′
a = xa + 1

mae
, x ′′

a = xa + 1
mab

31



Active Linked List

Now, we have a new ALL:

Ye X'a 1/Mae Yb X"a 1/Mab NULL

Figure 17: Updated Active List

– The draw function will now draw from x ′
a to x ′′

a .
– The x values are updated for each line
– until a new BSET entry is found.
– In our example, when we reach yd .

32



Active Linked List

a

b

c

c'

d

e

Ya

Yd

Yc

Figure 18: yd scan

– Scan line is now at yd .
– Fetch BSET entry for yd .
– merge with the ALL in

increasing order of x values.

33



Active Linked List

Now, we have the ALL:

Ye X'a 1/Mae Yb X''a 1/Mab NULLYc' Xd 1/Mdc Ye Xd 1/Mde

Figure 19: yd Active List

– We draw from xd to xd and x ′
a to x ′′

a .
– All x values are then updated for each line with the inverse

slope.

34



Active Linked List

a

b

c

c'

d

e

Ya

Yd

Yc

Figure 20: ye scan

What happens at ye?

35



Active Linked List

We monitor the maximum y value of the nodes in the ALL.

– when we exceed any maximum y value, we remove those nodes
from the ALL.

Yc' X'd 1/Mdc Yb X"a 1/Mab NULL

Figure 21: remove ye entries

36



Active Linked List

In our example, we have one more fetch from the BSET.

Yb Xc 1/Mcb Yb X"a 1/Mab NULL

Figure 22: yc

We have merged the yc entry and removed the yc′ nodes.

37



Scan-Line Implementation

We observe that splitting the c vertex automatically avoids double
drawing of monotonic vertices.

38



Boundary Fill

Another popular method for filling polygons.

39



Boundary Fill

idea:

– find the edges of the polygon.
– initialise a seed pixel
– from the seed, recursively colour the neighbours.
– stop when polygon is filled.

40



Connectivity

Figure 23: 4 connectivity Figure 24: 8 connectivity

41



Four Connectivity

Figure 25: 4 connectivity

Four connectivity requires fewer
recursive calls, but more steps to
complete.

42



Four Connectivity

Figure 26: 4 connectivity

Figure 27: 4 fill

43



Eight Connectivity

Figure 28: 8 connectivity

Eight connectivity usually
completes a fill with fewer steps.

44



Eight Connectivity

Figure 29: 8 connectivity

Figure 30: 8 fill

45



Eight Connectivity

Eight connectivity fills thin bridges more reliably.

Figure 31: filling thin bridges

46



Boundary Fill

func fill4(x, y, fill_colour, edge_colour):
if pixel(x, y) == edge_colour:

return
if pixel(x, y) == fill_colour:

return

draw(x, y, fill_colour)

fill4(x+1, y, fill_colour, edge_colour)
fill4(x-1, y, fill_colour, edge_colour)
fill4(x, y+1, fill_colour, edge_colour)
fill4(x, y-1, fill_colour, edge_colour)

47



Boundary Fill

Some caveats:

– recursive algorithm - so not memory efficient.
– leaks due to unclosed boundary
– premature stop if interior pixel is already fill colour.

48



Summary

– Polygon Filling
– Scan Line Algorithm
– Boundary Fill Algorithm

Reading:

– Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 4.10

49


	Content
	Polygon Filling
	Scan-Line Algorithm
	Scan-Line Implementation
	Boundary Fill
	Summary

