Polygon Filling
Graphics 1 CMP-5010B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCl 2.16a University of East Anglia

Spring 2022



Content

Polygon Filling
Scan Line Algorithm
Boundary Fill Algorithm



Polygon Filling

Identify pixels that belong to the interior of a polygon. Once
identified, we can:

pass the pixel to the rasteriser
assign colour to the pixel

assign a depth value to the pixel
sample a texture for the pixel



Polygon Filling

A polygon is a set of vertices that are connected by edges.
We need efficient algorithms to fill polygons.

We can extend ideas from line drawing to polygon filling.
Not all polygons are handled equally!



Convex Polygons

interior angles < 180°

scan lines enter the interior
once and exit once
triangles are always convex

Figure 1: convex polygon



Concave Polygons

arbitrarily complex polygons
scan lines enter and exit
many times

more difficult to fill

Figure 2: concave polygon



Scan-Line Algorithm

The scan-line algorithm must work for both convex and concave
polygons.



Scan-Line Algorithm

for line in y=0 to y=height:
counter = 0
for pixel in x=0 to x=width:
if edge:
counter +=1
if counter is odd:
draw(line, pixel)



Yi

Figure 3: concave polygon

><"



YA

Figure 4: concave scan

10



Scan-Line Algorithm

The algorithm seems to work well.

Have we considered all cases?



Figure 5: complex polygon

><"

12



Yi

Ya

Figure 6: scanning problem

><"

13



\7

Figure 7: naive algorithm wrongly fills the
cavity

Enter the left edge,
increment the counter
and draw.

Pass through vertex a,
increment the counter
and stop drawing.
Leave the right edge,
increment the counter
and draw.

14



Y4

Ya

Figure 8: Counting vertex a twice provides a
solution.

Solution:
— count the vertex twice

15



Problem:
Y

— Counting the vertex
twice does not always
/\/\ work!

Ya

Yb

bi/ o

Figure 9: Counting vertices twice does not
always work.

16



consider the edges at

each vertex

edges through vertex

b are monotonic in y

Figure 10: Difference between vertex a and
b.



Figure 11: Difference between vertex a and
b.

If we move around the

polygon in a clockwise

direction:
edges that enter and
leave vertex a go in
opposite y directions.
edges that enter and
leave vertex b go in
the same y direction.
edges through vertex
b are monotonic in y



We can split the vertex for monotonic edges:

\ \

\
)

Figure 12: split vertex

y+1

y-1

19



The lower edge is shortened to create two new edge points.

A W W
\ \
)

Figure 13: split vertex

20



Scan-Line Algorithm

process vertices of monotonic edges

for line in y=0 to y=height:
counter = 0
for pixel in x=0 to x=width:
if edge or edge-point:
counter +=1
if vertex:
counter +=2
if counter is odd:
draw(line, pixel)



Scan-Line Implementation

Expanding the pseudocode.



Scan-Line Implementation

The first step is to build an array of linked lists, called a Bucket
Sorted Edge Table (BSET).



Scan-Line Implementation

Each node in the linked list has 3 members related to a vertex, and
a pointer to the next node:

y value of the other vertex on the edge
x value of this vertex

inverse slope of the edge

pointer to the next node



Scan-Line Implementation

To determine edge intersections it uses the familiar slope of a line:

Yk+1 — Yk 1
m = = = Xk4+1 = Xk + —
Xk+1 — Xk Xk+1 — Xk m



Scan-Line Implementation

Before we start to build the Bucket Sorted Edge Table (BSET), we
split any vertices on monotonic edges.

The BSET is built from the vertex with the lowest y value to
the vertex with the highest y value.

If the vertex is part of two edges, the first node is for the left
edge, and the second node is for the right edge.

Split vertices have only one edge, so only one node is entered.



BSET Example

Figure 14: polygon scan

Yc

Yc' |Xd |1/Mch Ye | Xd |1/Mdel

Ye | Xa |1/Mae|——| Yb | Xa |1/Mab|

Figure 15: BSET

27



Scan-Line Run Time

The BSET is an initialisation step.
It is created once.

At runtime, we use another data structure:

Active Linked List (ALL).



Active Linked List

Initially, the ALL points to NULL.
Search the BSET for the first non NULL entry.
Set the ALL to the first non NULL entry.



Active Linked List

For our example, the ALL is first set to y,.

NULL

A 4

.—> Ye | Xa |1/Mael—{ Yb | Xa |1/Mab

Figure 16: Active List

The draw function will now draw from x, to x,, that is, just a single
point.



Active Linked List

Next, the scan line moves up to Y, + 1.

There is no entry in the BSET for this y value.
Therefore the current ALL has the x values updated:

! 1 " 1
X; = Xz + , X3 =Xa+
Mae Map




Active Linked List

Now, we have a new ALL:

.—> Ye | X'al1/Mael—> Yb | X"a|1/Mab

Figure 17: Updated Active List

— The draw function will now draw from x, to x, .
— The x values are updated for each line

— until a new BSET entry is found.

— In our example, when we reach yy.

Y

NULL

32



Active Linked List

Scan line is now at yy .
Fetch BSET entry for y,.
merge with the ALL in
increasing order of x values.

Yc

Yd

Ya

Figure 18: y4 scan



Active Linked List

Now, we have the ALL:
.—>|Yc' | Xd |1/Mdc,—-| Ye | Xd |1/Mde,—>| Ye |X'a|1/|v|ae|—-| Yb |X"a|1/Mab

Figure 19: y, Active List

~ We draw from x4 to x4 and x| to x, .
— All x values are then updated for each line with the inverse
slope.

34



Active Linked List

ri

Yd

d \[
- Y
a

a

Figure 20: y, scan

What happens at y.?

35



Active Linked List

We monitor the maximum y value of the nodes in the ALL.

— when we exceed any maximum y value, we remove those nodes

from the ALL.

-

Yc'

X'd

1/Mdc

\ 4

Yb

X"a

1/Mab

Figure 21: remove y, entries

Y

NULL

36



Active Linked List

In our example, we have one more fetch from the BSET.

Yb | X"a|1/Mab NULL

vy

.—» Yb | Xc |1/Mcb

Figure 22: y,

We have merged the y. entry and removed the y_ nodes.



Scan-Line Implementation

We observe that splitting the ¢ vertex automatically avoids double
drawing of monotonic vertices.



Boundary Fill

Another popular method for filling polygons.



Boundary Fill

idea:

find the edges of the polygon.

initialise a seed pixel

from the seed, recursively colour the neighbours.
stop when polygon is filled.



Connectivity

Figure 23: 4 connectivity

++

+4

Figure 24: 8 connectivity

41



Four Connectivity

Figure 25: 4 connectivity

Four connectivity requires fewer
recursive calls, but more steps to
complete.

42



Four Connectivity

Figure 26: 4 connectivity

Figure 27: 4 fill

43



Eight Connectivity

++

+4

Figure 28: 8 connectivity

Eight connectivity usually
completes a fill with fewer steps.

44



Eight Connectivity

+4

++

Figure 29: 8 connectivity

Figure 30: 8 fill

45



Eight Connectivity

Eight connectivity fills thin bridges more reliably.

Figure 31: filling thin bridges

46



Boundary Fill

func fill4(x, y, fill_colour, edge_colour):
if pixel(x, y) == edge_colour:

return

if pixel(x, y) == fill_colour:

return
draw(x, y, fill_colour)

£i114(x+1, y, £ill_colour,
£ill4(x-1, y, fill_colour,
£i114(x, y+1, £ill_colour,
£ill4(x, y-1, fill_colour,

edge_colour)
edge_colour)
edge_colour)
edge_colour)



Boundary Fill

Some caveats:

recursive algorithm - so not memory efficient.
leaks due to unclosed boundary
premature stop if interior pixel is already fill colour.



Summary

Polygon Filling
Scan Line Algorithm
Boundary Fill Algorithm

Reading:

Hearn & Baker, Computer Graphics with OpenGL, 4th Edition,
Chapter 4.10



	Content
	Polygon Filling
	Scan-Line Algorithm
	Scan-Line Implementation
	Boundary Fill
	Summary

