
Introduction to Transformations
Graphics 1 CMP-5010B

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

February, 2022

1



Content

– What is a transformation?
– Types of transformations
– Translation
– Rotation

2



What is a transformation

. . . in computer graphics?
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Transformations

. . . in 2D Computer Graphics

– Two spatial dimensions
– Planar world or the “plane”
– Usually represented by Cartesian coordinates
– x and y for objects
– s and t for textures
– u and v for images
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Transformations

Geometric transformations will map points in one space to points in
another space:

(x ′, y ′) = f (x , y)
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Transformations

The mapping function uses elementary operations, which include:

– Translation
– Rotation
– Scaling
– Shear
– Reflection
– Projection
– Warp
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Transformations

Types of transformation preserve geometric properties of the
object.
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Rigid transformations

– Translation and Rotation
– preserves the Euclidean distance between every pair of points
– preserves “handedness” of the object
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Euclidean transformations

– Translation, Rotation and Reflection
– Also known as Isometries
– preserves the Euclidean distance between every pair of points
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Similarity transformations

– Translation, Rotation, Reflection and Uniform Scaling
– preserves the shapes of the objects
– Examples of similar shapes include all squares, all circles, but

not all triangles.
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Affine transformations

– Translation, Rotation, Reflection, Scaling and Shear
– Scaling can be uniform or non-uniform
– preserves lines and parallelism of objects
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Projective transformations

– Projection from N dimensions to a lower dimension
– useful in 3D graphics but not in 2D
– Perspective or Orthographic projection
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Non-linear transformations

– Warp: non-linearly deform the object.
– Example: for images we may talk about lens distortion.
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Object Representation

– How do we represent objects in computer graphics?
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Object Representation

In graphics, we represent objects using points or vertices, which are
connected to form polygons or faces.
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Object Representation

Only the vertices are subjected to the transformations.
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Object Representation

Question: How do we represent a vertex mathematically?

– A column vector of the vertex coordinates.
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Tools for transformations

Transformations of an object are applied to each individual vertex
of that object.
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Tools for transformations

The mathematical entity used to perform a transformation to the
vector of n vertex coordinates is:

A square matrix of size n x n, where n is the dimension of the vertex
vector.
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2D Transformations

– Assume a 2D plane with coordinates x and y .
– Polygonal object is a triangle with 3 vertices.
– All vertices are subject to transformations we apply.

20



Figure 1: The coordinate system
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Figure 2: A model in the plane.
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Translation

Formally, we will represent vertex coordinates as a column vector:

[
x
y

]
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Translation

Translation is performed by adding a translation vector.

[
x ′

y ′

]
=

[
x
y

]
+

[
tx
ty

]
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Translation

Example: Consider the vertex with coordinates (−5, −2), that we
wish to translate in the x direction 9 units, and in the y direction
5 units.

[
4
3

]
=

[
−5
−2

]
+

[
9
5

]
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Figure 3: Translation as a vector.
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Figure 4: Add translation vector to each vertex.
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Figure 5: All vertices are translated.
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Figure 6: The model is in a new position.
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[
x ′

y ′

]
=

[
x
y

]
+

[
tx
ty

]
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Rotation

We stated earlier, that the mathematical entity used to perform a
transformations to the vector coordinates is a matrix.

How do we use a matrix to perform a transformation?

31



Rotation

– translation moves a single point
– rotation of a point is meaningless
– we need to perform rotations about an axis
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Rotation

A mnemonic for trigonometry is SOH, CAH, TOA.

sin(θ) = O
H , cos(θ) = A

H , tan(θ) = O
A
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Rotation

We can fit this mnemonic to our 2D plane:

sin(θ) = O
H = y

r , cos(θ) = A
H = x

r , tan(θ) = O
A = y

x

where r is the radius of a circle.
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Figure 7: rotation in unit circle
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Matrix multiplication

Matrix multiplication is performed row by column:

[
ax + by
cx + dy

]
=

[
a b
c d

]
×

[
x
y

]

– Number of columns in the first operand must equal the
number of rows in the second operand.
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Rotation Matrix

Deriving the rotation matrix using trigonometric identities.
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Figure 8: A model in the plane
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Figure 9: consider one vertex
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Figure 10: angle between the x axis
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Figure 11: rotation about the origin
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Figure 12: a second rotation
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Figure 13: sum of two angles
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Figure 14: r and r ′
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r =
[
x
y

]
=

[
cos β
sin β

]

r ′ =
[
x ′

y ′

]
=

[
cos(α + β)
sin(α + β)

]
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Ptolomy’s identity

The sum of two angles:

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sin α cos β + cos α sin β
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Rotation Matrix Derivation

using the identities:

[
x ′

y ′

]
=

[
cos α cos β − sin α sin β
sin α cos β + cos α sin β

]
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Rotation Matrix Derivation

recall:

[
x
y

]
=

[
cos β
sin β

]

substitute x and y :

[
x ′

y ′

]
=

[
x cos α − y sin α
x sin α + y cos α

]
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Rotation Matrix Derivation

as a matrix multiplication:

[
x ′

y ′

]
=

[
cos α − sin α
sin α cos α

] [
x
y

]
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R =
[
cos α − sin α
sin α cos α

]
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Summary

– Types of transformations
– Translation
– Rotation

Reading:

– Hearn, D. et al. (2004). Computer Graphics with OpenGL.
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