
Canvas 2D Graphics
Web Based Programming - CMP4011A

Dr. David Greenwood

david.greenwood@uea.ac.uk

SCI 2.16a University of East Anglia

October 28, 2021

1



Contents

– The canvas element
– The rendering context
– Drawing shapes
– Sprites
– Animation with requestAnimationFrame
– Responding to events

2



Documentation

– W3Schools
– Mozilla
– Canvas API

3

https://www.w3schools.com/tags/ref_canvas.asp
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API


Further reading

Eloquent JavaScript has a chapter on the canvas element.

– https://eloquentjavascript.net

4

https://eloquentjavascript.net


<canvas>

5



Canvas element

A canvas is a single DOM element that contains a image.

– Does not preserve shapes such that they can be moved or
resized.

– The only way to move a shape is to clear the canvas and
redraw it.

6



Canvas element

<canvas width="150" height="150"></canvas>

– Two optional attributes: width and height.
– Can be set using DOM properties.
– Default values are 300 wide 150 high.

7



Canvas element

– A new canvas is transparent and shows as an empty space in
the document.

– The element can be sized by CSS, but during rendering is
scaled to fit its layout size.

– If the CSS sizing doesn’t respect the ratio of the initial canvas,
it will appear distorted.

8



Canvas element

<canvas width="150" height="150">
display this text if the browser
does not support HTML5 canvas

</canvas>

– Fallback content is placed between the open and closing tags.
– The closing tag is required

• . . . else all subsequent content is ignored.

9



Canvas element

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<link rel="stylesheet" href="style.css">
<script src="script.js" defer></script>
<title>HTML Canvas</title>

</head>
<body>

<canvas id="canvas"></canvas>
</body>
</html>

10



Canvas API

The Canvas API provides a means for drawing graphics using
JavaScript and the <canvas> DOM element.

11



Canvas API

We can use the canvas for:

– animation
– game graphics
– data visualization
– image manipulation
– real-time video

12



The rendering context

The <canvas> element creates a fixed-size drawing surface that
exposes a rendering context.

13



The rendering context

We will use the 2d rendering context.

14



The rendering context

There is also a 3D rendering context: WebGL

This has many powerful features, including access to the graphics
hardware, and openGL like shaders.

We will not cover the 3D context in this lecture.

15



The rendering context

const canvas = document.getElementById("canvas");
const ctx = canvas.getContext("2d");

You create a context with the getContext method on the <canvas>
DOM element.

16



The rendering context

Access the Canvas API via the ctx object.

You should inspect the context object in the console.

console.log(ctx)

17



The rendering context

console.log(ctx)

You will see current values for all the attributes, and if you expand
the CanvasRenderingContext2D field you will see the many
methods available.

18



Drawing

The rendering context has a
coordinate system which, by
default, places the origin at the
top left corner of the canvas.
Each unit of length is 1 pixel.

19



Drawing

Canvas supports two primitive shapes: rectangles and paths.

A shape can be filled, meaning its area is given a certain colour or
pattern, or it can be stroked, which means a line is drawn along its
edge.

20



Drawing

There are three functions that draw rectangles on the canvas:

fillRect(x, y, width, height)
strokeRect(x, y, width, height)
clearRect(x, y, width, height)

21



Drawing

fillRect(x, y, width, height)
strokeRect(x, y, width, height)
clearRect(x, y, width, height)

The parameters are the same for all three functions:

– x, y define the top left corner
– then we have width and height

22



Drawing

The colour of the fill, thickness of the stroke, and so on, are not
determined by an argument to the drawing method, but by
properties of the context object.

23



Drawing

ctx.fillStyle = "red";

– fillStyle defines the fill appearance.
– Set to a string that specifies a colour.
– Uses the same colour notation as CSS.

24



Drawing

ctx.strokeStyle = "blue";
ctx.lineWidth = 5;

– strokeStyle specifies the colour of a stroked line.
– Width is set by the lineWidth property.
– lineWidth may be any positive number.

25



Drawing

const x = y = 75
const w = h = 250
ctx.fillStyle = "red"
ctx.strokeStyle = "blue"
ctx.fillRect(x, y, w, h)
ctx.strokeRect(x, y, w, h)

26



Paths

A path is a sequence of points, connected by segments of lines that
can be of different shapes, of different width and of different colour.

27



Paths

It is possible to build any complex shape using a combination of the
path tools.

28



Paths

Paths are not values that can be stored and passed around.

– You must make a sequence of method calls to describe its
shape.

29



Paths

– Each segment created with lineTo starts at the path’s current
position.

– The current position is usually the end of the last segment.
– Or, it is the position passed to moveTo.

30



Paths

When filling a path:

– Each shape is filled separately.
– A path can have multiple shapes.
– The path needs to be closed.

31



Paths

If the path is not already closed, a line is added from its end to its
start.

The shape enclosed by the now completed path is filled.

32



Paths

ctx.fillStyle = "red"
ctx.beginPath()
ctx.moveTo(75, 200)
ctx.lineTo(300, 375)
ctx.lineTo(300, 25)
ctx.fill()

33



Curves

A path may also contain curved lines.

– These are a bit more involved to draw.

34



Curves

Complex curves and shapes can be drawn using Bezier and
quadratic curves. We wont cover these functions for now.

– quadraticCurveTo()
– bezierCurveTo()

But you should know that they are available.

35



Curves

To draw circle segments we use the arc functions.

– arc(x, y, radius, startAngle, endAngle,
counterclockwise)

– arcTo(x1, y1, x2, y2, radius)

36



Curves

ctx.fillStyle = "red"
ctx.arc(200, 200, 150, 0, Math.PI * 2)
ctx.fill()

37



Text

The canvas rendering context provides two methods to render text:

– fillText(text, x, y [, maxWidth])
– strokeText(text, x, y [, maxWidth])

38



Text

const text = "Hello World!"
const x = 15, y = 200
ctx.fillStyle = "red"
ctx.strokeStyle = "blue"
ctx.font = '72px serif'
ctx.fillText(text, x, y)
ctx.strokeText(text, x, y)

39



Bitmap graphics

Images for computer graphics are usually in one of two categories:

– Vector graphics
– Bitmap graphics

So far we have been working with vector graphics - where we have
specified shapes with lines and curves.

40



Bitmap graphics

Bitmap graphics don’t specify shapes but work with pixel data.

Pixel data defines values on a regular 2D grid.

41



Bitmap graphics

The drawImage() method allows us to draw pixel data onto a
canvas.

This pixel data can originate from an element or from another
canvas.

let img = document.createElement("img")
img.src = "img.png"

42



Bitmap graphics

However, if we just call drawImage(), it is unlikely to display the
image as we expect.

let img = document.createElement("img")
img.src = "img.png"
ctx.drawImage(img, 0, 0)

Why is this?

43



Bitmap graphics

It is essential to ensure the image resource is loaded before drawing.

44



Bitmap graphics

const canvas = document.getElementById("canvas")
const ctx = canvas.getContext("2d")

let img = document.createElement("img")
img.src = "img.png"

img.addEventListener("load", () => {
ctx.drawImage(img, 0, 0)

});

45



Bitmap graphics

In addition to the previous example, the drawImage() method can
take two further arguments:

– drawImage(image, dx, dy, dWidth, dHeight)
– this lets us scale the image.

46



Bitmap graphics

The drawImage() method also has a nine argument version which
lets us specify the source rectangle:

– drawImage(image, sx, sy, sWidth, sHeight, dx, dy,
dWidth, dHeight)

– s* define the source rectangle.
– d* define the destination rectangle.

47



Sprites

Sprites are two-dimensional images included in a larger scene.

– Often used for animation.
– Multiple poses can be stored in one image. . .
– a sprite sheet

48



Sprites

Storing all the image frames in a
single file is often preferred for
compression efficiency.

49



Sprites

The ability to select a source rectangle allows us to render a section
of the entire sheet.

50



Sprites

– Source rectangle is 41,0,40,29
– Destination is 200,100,120,87
– We have “cut out” a region of

the sprite sheet and placed it on
the canvas.

– The canvas respects the alpha
value of the source image.

51



Sprites

consider this source code:

const sw = 40, sh = 29
const dw = 120, dh = 87

sprite.addEventListener('load', () => {
ctx.drawImage(sprite, 0, 0, sw, sh, 50, 100, dw, dh)
ctx.drawImage(sprite, 41, 0, sw, sh, 200, 100, dw, dh)

})

what does this code do?

52



Sprites

We have cut out two regions of the
sprite sheet and placed them on the
canvas.

53



Sprites

Here is the Idea. . .

Draw one image, then draw another image in the same place.

54



Animation

requestAnimationFrame()

– Tells the browser that you wish to perform an animation.
– Requests that the browser calls a callback function.
– The callback updates an animation before the next repaint.

55



Animation

requestAnimationFrame()

A callback is a function passed as an argument to another function.

– The callback function is always passed a timestamp.
– The timestamp gives the milliseconds since the page was

loaded.

56



Using a callback function

You will write the callback function:

function myCallBack(timestamp) {
console.log(timestamp)

}

requestAnimationFrame(myCallBack)

57



Using a callback function

You will notice that we get only one value printed to console.

– We need to call requestAnimationFrame() again to get the
next value.

– and again. . .
– and again. . .

58



Recursion

We do this using recursion

function myCallBack(timestamp) {
console.log(timestamp)
requestAnimationFrame(myCallBack)

}

myCallBack()

– we moved requestAnimationFrame() into our callback

59



Recursion

We make a call to our function, to start the recursion.

function myCallBack(timestamp) {
console.log(timestamp)
requestAnimationFrame(myCallBack)

}

myCallBack()

60



Recursion

How often does the callback function get called?

1396.32
1412.986
1429.652
1446.318
1462.984
1479.65
1496.316

61



Using a callback function

Often we want to do something after a period of time has passed.

– Store the previous time globally and compare it to the current
time.

– Check if the enough time has passed in our callback.

62



Using a callback function

let prevTime = 0

function myCallBack(timestamp) {
if (timestamp - prevTime > 500) {

prevTime = timestamp
console.log(timestamp)

}
requestAnimationFrame(myCallBack)

}

myCallBack()

63



Using a callback function

Now we get this sort of output:

514.689
1031.335
1547.981
2064.627
2581.273
3097.919
3598.031

64



Animation

Instead of logging to console, we could draw our image on the
canvas.

65



Animation

Store some global variables.

let prevTime = 0
let frame = 0

66



Animation

Write a draw function.

function draw(frame, x, y) {
let sx = 41
if (frame === 0) sx = 0
ctx.clearRect(0, 0, canvas.width, canvas.height)
ctx.drawImage(sprite, sx, 0, 40, 29, x, y, 120, 87)

}

67



Animation

Finally, we call our animate function.

function animate(timestamp) {
if (timestamp - prevTime > 500) {

prevTime = timestamp
frame = (frame + 1) % 2

}
draw(frame, 100, 50)
requestAnimationFrame(animate)

}

animate()

68



Animation

We now have our sprite’s frames
drawn alternately.

69



Events

Formally, an event is a message sent from the browser to a
JavaScript function, for example:

– mouse clicks
– key presses
– window resizes

70



Events

Informally, we can describe events in our animation that require
some sort of response, such as collision detection in a game.

71



Keyboard Events

const KEYS = {}

document.addEventListener("keydown", (event) => {
KEYS[event.code] = event.type === "keydown"

})

document.addEventListener("keyup", (event) => {
KEYS[event.code] = event.type === "keydown"

})

72



Keyboard Events

To check if a key is pressed, we can read the KEYS object.

if (KEYS['ArrowLeft']) x -= 1
if (KEYS['ArrowRight']) x += 1

73



Collision Detection

Often we want to know if two objects are touching, or overlapping.

– game characters
– frame boundaries
– UI elements

74



AABB Collision Detection

What is an Axis Aligned Bounding Box (AABB)?

75



AABB Collision Detection

An AABB is the smallest rectangle that encloses an object and is
aligned with the axes of the coordinate system.

– the left and right edges of the AABB are parallel to the x-axis
– the top and bottom edges of the AABB are parallel to the

y-axis

76



AABB Collision Detection

compare two objects with x, y, width and height properties

function AABB(a, b) {
if (a.x > b.x + b.w) return false
if (a.x + a.w < b.x) return false
if (a.y > b.y + b.h) return false
if (a.y + a.h < b.y) return false
return true

}

77



AABB Collision Detection

You could consider a variation of this method to check if an object
is within the bounds of the canvas.

78



Radial Collision Detection

Radial collision detection uses Pythagoras’ theorem to determine if
two objects are touching.

If the squared sum of the radii is greater than the squared distance
between the centres, then the objects are colliding.

79



Radial Collision Detection

compare two objects with x, y and radius properties

function radial(a, b) {
let radii = a.radius + b.radius
let dx = a.x - b.x
let dy = a.y - b.y
return radii * radii > dx * dx + dy * dy

}

80



Collision Detection

Once we have detected a collision, we can respond. . .

81



Summary

– The canvas element
– Drawing shapes
– Sprites
– Animation with requestAnimationFrame
– Events
– Collisions

82



See you in the labs!

83


	Contents
	
	Canvas API
	Drawing
	Sprites
	Animation
	Events
	Summary
	

